Pluripotent hemopoietic stem cells give rise to osteoclasts. 1986

G B Schneider, and M Relfson, and J Nicolas

Osteopetrosis in the ia (incisors absent) rat is the result of reduced bone resorption due to abnormal osteoclasts. The mutant osteoclasts lack a ruffled border--the membrane specialization involved in osteolysis. Studies in the ia mutant have shown that when pluripotent hemopoietic stem cells from normal littermates are transplanted into ia recipients, normal osteoclasts are formed and the skeletal sclerosis is eventually cured. The present study was conducted to provide evidence for the mechanism of the cure. Do the transplanted stem cells provide a helper function, i.e. secrete soluble factor(s) which transform pre-existing osteoclasts, or do they fuse with each other or pre-existing osteoclasts, or do they fuse with each other or pre-existing osteoclasts to form functional osteoclasts? Using the procedures described by Gold-schneider and co-workers, and fluorescence-activated cell sorting (FACS), pluripotent hemopoietic stem cells were isolated from normal rat bone marrow, labeled with saturated FITC, and injected intravenously into irradiated ia rats. After 48 hr, the recipients' long bones were removed and split longitudinally, and the endosteal surface was scraped. The resulting cellular suspension containing osteoclasts was examined by phase contrast and fluorescence microscopy. Fluorescing mononuclear cells of donor origin that had homed to the bone marrow demonstrated moderate cytoplasmic fluorescence. Approximately 30% of the osteoclasts observed demonstrated light cytoplasmic fluorescence. When cellular pools incapable of curing osteopetrosis (thymocytes) were labeled and injected into ia recipients, no labeled osteoclasts were observed. These studies indicated that pluripotent hemopoietic stem cells, when transplanted into ia hosts, fuse with each other and differentiate into osteoclasts or fuse with pre-existing osteoclasts.

UI MeSH Term Description Entries
D007180 Incisor Any of the eight frontal teeth (four maxillary and four mandibular) having a sharp incisal edge for cutting food and a single root, which occurs in man both as a deciduous and a permanent tooth. (Jablonski, Dictionary of Dentistry, 1992, p820) Incisors
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D010022 Osteopetrosis Excessive formation of dense trabecular bone leading to pathological fractures; OSTEITIS; SPLENOMEGALY with infarct; ANEMIA; and extramedullary hemopoiesis (HEMATOPOIESIS, EXTRAMEDULLARY). Albers-Schoenberg Disease,Marble Bone Disease,Osteosclerosis Fragilis,Albers-Schonberg Disease,Albers-Schonberg Disease, Autosomal Dominant,Albers-Schönberg Disease,Autosomal Dominant Osteopetrosis Type 2,Congenital Osteopetrosis,Marble Bones, Autosomal Dominant,Osteopetrosis Autosomal Dominant Type 2,Osteopetrosis, Autosomal Dominant 2,Osteopetrosis, Autosomal Dominant, Type II,Osteosclerosis Fragilis Generalisata,Albers Schoenberg Disease,Albers Schonberg Disease,Albers Schonberg Disease, Autosomal Dominant,Albers Schönberg Disease,Disease, Albers-Schoenberg,Disease, Albers-Schonberg,Disease, Albers-Schönberg,Disease, Marble Bone,Osteopetroses,Osteosclerosis Fragilis Generalisatas
D011922 Rats, Mutant Strains Rats bearing mutant genes which are phenotypically expressed in the animals. Mutant Strains Rat,Mutant Strains Rats,Rat, Mutant Strains,Strains Rat, Mutant,Strains Rats, Mutant
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013861 Thiocyanates Organic derivatives of thiocyanic acid which contain the general formula R-SCN. Rhodanate,Rhodanates
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic

Related Publications

G B Schneider, and M Relfson, and J Nicolas
January 2013, Blood cells, molecules & diseases,
G B Schneider, and M Relfson, and J Nicolas
June 1984, The Journal of experimental medicine,
G B Schneider, and M Relfson, and J Nicolas
January 1978, Archivio "E. Maragliano" di patologia e clinica,
G B Schneider, and M Relfson, and J Nicolas
January 1982, Stem cells,
G B Schneider, and M Relfson, and J Nicolas
December 2010, Nature,
G B Schneider, and M Relfson, and J Nicolas
November 2006, Neurochemical research,
G B Schneider, and M Relfson, and J Nicolas
February 2000, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
G B Schneider, and M Relfson, and J Nicolas
March 1997, Proceedings of the National Academy of Sciences of the United States of America,
G B Schneider, and M Relfson, and J Nicolas
May 1989, Bone and mineral,
G B Schneider, and M Relfson, and J Nicolas
January 2006, Folia biologica,
Copied contents to your clipboard!