The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. 1986

K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan

The development of simultaneous resistance to multiple drugs in cultured cells occurs after selection for resistance to single agents. This multidrug-resistance phenotype is thought to mimic multidrug-resistance in human tumors treated with chemotherapy. Both the expression of a membrane protein, termed P170 or P-glycoprotein, and the expression of a cloned DNA fragment, termed mdr1, have been shown independently to be associated with multidrug-resistance in cultured cells. In this work, we show that human KB carcinoma cells which express the mdr1 gene also express P-glycoprotein, and that cDNAs encoding P-glycoprotein cross-hybridize with mdr1 cDNAs. Thus, the mdr1 gene codes for P-glycoprotein.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene

Related Publications

K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
August 2001, The Biochemical journal,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
October 1992, Journal of the National Cancer Institute,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
March 1999, The Journal of biological chemistry,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
July 2001, International journal of cancer,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
January 1992, Biochemical pharmacology,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
July 1989, Biochemical and biophysical research communications,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
April 2004, Anti-cancer drugs,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
October 1988, Gan to kagaku ryoho. Cancer & chemotherapy,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
January 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
K Ueda, and M M Cornwell, and M M Gottesman, and I Pastan, and I B Roninson, and V Ling, and J R Riordan
July 2006, Current drug targets,
Copied contents to your clipboard!