Muscarinic acetylcholine receptor but not nicotinic acetylcholine receptor plays a role in morphine-induced behavioral sensitization in rats. 2017

Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China.

Background and Aim The cholinergic system can affect drug reward. The present study aimed to examine the roles of muscarinic acetylcholine receptor (mAChR) and nicotinic acetylcholine receptor (nAChR) in morphine-induced behavioral sensitization. To analyze the roles of mAChR and nAChR in behavioral sensitization induced by morphine (5mg/kg), seven experiments were designed. Experiments 1 and 2 examined the effects of 3, 1, and 0.3 mg/kg scopolamine and 0.2, 0.1, and 0.05mg/kg scopolamine, respectively, on the locomotor activity when administered alone. Experiments 3 and 4 explored the effect of scopolamine on morphine-induced behavioral sensitization. Experiment 5 studied the effect of mecamylamine on morphine-induced behavioral sensitization. Experiments 6 and 7 investigated the effects of scopolamine+huperzine A and mecamylamine+huperzine A, respectively, on morphine-induced behavioral sensitization. The results revealed that 3mg/kg scopolamine, which significantly enhanced locomotor activity when administered alone, inhibited the acquisition of morphine-induced sensitization. However, mecamylamine (0.5, 1, 2mg/kg) did not have these effects. The co-administration of scopolamine (0.05 mg/kg)+huperzine A (0.4mg/kg) or mecamylamine (1mg/kg)+huperzine A (0.4mg/kg) did not affect the acquisition of morphine-induced behavioral sensitization. Scopolamine (0.05mg/kg) which did not affect the locomotor activity when administered alone, but not mecamylamine (1mg/kg), reversed the acute attenuation effect of huperzine A (0.4mg/kg) on morphine-induced locomotor activity at the acquisition stage and reversed the inhibition of huperzine A on the expression of morphine-induced sensitization. The mAChR might play a more important role in morphine-induced locomotor activity and the expression of morphine-induced behavioral sensitization. The mechanisms of mAChR and nAChR were relatively separate in morphine-induced sensitization.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D008464 Mecamylamine A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool.
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
May 2010, Medical hypotheses,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
September 2015, Behavioural brain research,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
April 2023, Psychopharmacology,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
August 2002, Proceedings of the National Academy of Sciences of the United States of America,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
April 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
May 2007, Psychopharmacology,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
January 1990, Behavioural brain research,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
May 2019, Acta pharmacologica Sinica,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
July 2011, Journal of microbiology and biotechnology,
Jinling Sun, and Lin Tian, and Ruisi Cui, and Heng Ruan, and Xinwang Li
February 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Copied contents to your clipboard!