Road Map for the Structure-Based Design of Selective Covalent HCV NS3/4A Protease Inhibitors. 2017

Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.

Over the last 2 decades, covalent inhibitors have gained much popularity and is living up to its reputation as a powerful tool in drug discovery. Covalent inhibitors possess many significant advantages including increased biochemical efficiency, prolonged duration and the ability to target shallow, solvent exposed substrate-binding domains. However, rapidly mounting concerns over the potential toxicity, highly reactive nature and general lack of selectivity have negatively impacted covalent inhibitor development. Recently, a great deal of emphasis by the pharmaceutical industry has been placed toward the development of novel approaches to alleviate the major challenges experienced through covalent inhibition. This has unexpectedly led to the emergence of "selective" covalent inhibitors. The purpose of this review is not only to provide an overview from literature but to introduce a technical guidance as to how to initiate a systematic "road map" for the design of selective covalent inhibitors which we believe may assist in the design and development of optimized potential selective covalent HCV NS3/4A viral protease inhibitors.

UI MeSH Term Description Entries
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D006526 Hepatitis C INFLAMMATION of the LIVER in humans caused by HEPATITIS C VIRUS, a single-stranded RNA virus. Its incubation period is 30-90 days. Hepatitis C is transmitted primarily by contaminated blood parenterally and is often associated with transfusion and intravenous drug abuse. However, in a significant number of cases, the source of hepatitis C infection is unknown. Hepatitis, Viral, Non-A, Non-B, Parenterally-Transmitted,Parenterally-Transmitted Non-A, Non-B Hepatitis,PT-NANBH,Parenterally Transmitted Non A, Non B Hepatitis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D017361 Viral Nonstructural Proteins Proteins encoded by a VIRAL GENOME that are not structural components of VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY. Nonstructural Proteins, Viral,NS Proteins, Viral,Viral NS Proteins,Viral Non-Structural Proteins,Viral Nonstructural Protein,Viral Nonstructural Proteins NS1,Viral Nonstructural Proteins NS2,Nonstructural Protein, Viral,Viral Non Structural Proteins
D057057 Serine Proteases Peptide hydrolases that contain at the active site a SERINE residue involved in catalysis. Serine Proteinases,Serine Protease,Serine Protein Hydrolases,Serine Proteinase,Protease, Serine,Proteases, Serine,Protein Hydrolases, Serine,Proteinase, Serine,Proteinases, Serine
D062105 Molecular Docking Simulation A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein. Molecular Docking,Molecular Docking Simulations,Molecular Docking Analysis,Analysis, Molecular Docking,Docking Analysis, Molecular,Docking Simulation, Molecular,Docking, Molecular,Molecular Docking Analyses,Molecular Dockings,Simulation, Molecular Docking

Related Publications

Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
January 2007, Current topics in medicinal chemistry,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
October 2014, Current opinion in pharmacology,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
January 2020, Drug design, development and therapy,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
October 2017, Life sciences,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
September 2008, Bioorganic & medicinal chemistry,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
August 2005, Journal of medicinal chemistry,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
December 2014, Bioorganic & medicinal chemistry,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
March 2003, Bioorganic & medicinal chemistry letters,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
December 2012, Bioorganic & medicinal chemistry letters,
Letitia Shunmugam, and Pritika Ramharack, and Mahmoud E S Soliman
December 2008, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!