Flavin-containing monooxygenase activity in human liver microsomes. 1987

M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett

Human liver microsomal flavin-containing monooxygenase activity has been studied using dimethylaniline N-oxidation and thiobenzamide S-oxidation. Except for one subject, the capacity of human liver microsomes to mediate these reactions were markedly increased at pH 8.4 compared to pH 7.4. The mean dimethylaniline N-oxidase activities at pH 7.4 and 8.4 in the four subjects tested were 2.49 +/- 1.13 and 6.59 +/- 4.04 nmol mg-1 min-1, respectively (mean +/- SD, N = 4). The mean thiobenzamide S-oxidase activities at pH 7.4 and 8.4 were 1.39 +/- 0.51 and 2.74 +/- 1.28 nmol mg-1 min-1, respectively. At pH 7.4, an antibody to the human liver NADPH-cytochrome P-450 reductase inhibited dimethylaniline N-oxidation between 4 and 38%. The same antibody had no effect on this reaction at pH 8.4. Except for one subject, a battery of cytochrome P-450 inhibitors also had little effect on this reaction. Further, preincubating human microsomes at 45 degrees C in the absence of NADPH for 4 min destroyed approximately 90% of the dimethylaniline N-oxidase activity. These data collectively suggested that the flavin-containing mono-oxygenase is the major enzyme mediating this reaction in human liver microsomes. In contrast to dimethylaniline N-oxidation, thiobenzamide S-oxidation was significantly inhibited by the anti-reductase at both pH 7.4 and 8.4, respectively. These data indicate that cytochromes P-450 contribute significantly to this reaction in human liver microsomes.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
June 2008, Drug metabolism and disposition: the biological fate of chemicals,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
January 1984, The International journal of biochemistry,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
February 1995, Brain research,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
May 1994, Biological & pharmaceutical bulletin,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
December 2004, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
January 1992, Chemical research in toxicology,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
December 2007, Expert opinion on drug metabolism & toxicology,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
June 2003, Life sciences,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
January 1999, Drug metabolism and disposition: the biological fate of chemicals,
M E McManus, and I Stupans, and W Burgess, and J A Koenig, and P M Hall, and D J Birkett
March 1982, Biochemical pharmacology,
Copied contents to your clipboard!