Diffusion tensor MR imaging characteristics of cerebral white matter development in fetal pigs. 2017

Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
Department of Radiology, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China.

The purpose of this study was to investigate the anisotropic features of fetal pig cerebral white matter (WM) development by magnetic resonance diffusion tensor imaging, and to evaluate the developmental status of cerebral WM in different anatomical sites at different times. Fetal pigs were divided into three groups according to gestational age: E69 (n = 8), E85 (n = 11), and E114 (n = 6). All pigs were subjected to conventional magnetic resonance imaging (MRI) and diffusion tensor imaging using a GE Signa 3.0 T MRI system (GE Healthcare, Sunnyvale, CA, USA). Fractional anisotropy (FA) was measured in deep WM structures and peripheral WM regions. After the MRI scans,the animals were sacrificed and pathology sections were prepared for hematoxylin & eosin (HE) staining and luxol fast blue (LFB) staining. Data were statistically analyzed with SPSS version 16.0 (SPSS, Chicago, IL, USA). A P-value < 0.05 was considered statistically significant. Mean FA values for each subject region of interest (ROI), and deep and peripheral WM at different gestational ages were calculated, respectively, and were plotted against gestational age with linear correlation statistical analyses. The differences of data were analyzed with univariate ANOVA analyses. There were no significant differences in FAs between the right and left hemispheres. Differences were observed between peripheral WM and deep WM in fetal brains. A significant FA growth with increased gestational age was found when comparing E85 group and E114 group. There was no difference in the FA value of deep WM between the E69 group and E85 group. The HE staining and LFB staining of fetal cerebral WM showed that the development from the E69 group to the E85 group, and the E85 group to the E114 group corresponded with myelin gliosis and myelination, respectively. FA values can be used to quantify anisotropy of the different cerebral WM areas. FA values did not change significantly between 1/2 way and 3/4 of the way through gestation but was then increased dramatically at term, which could be explained by myelin gliosis and myelination ,respectively.

UI MeSH Term Description Entries
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D005911 Gliosis The production of a dense fibrous network of neuroglia; includes astrocytosis, which is a proliferation of astrocytes in the area of a degenerative lesion. Astrocytosis,Astrogliosis,Glial Scar,Astrocytoses,Glial Scars,Scar, Glial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D056324 Diffusion Tensor Imaging The use of diffusion ANISOTROPY data from diffusion magnetic resonance imaging results to construct images based on the direction of the faster diffusing molecules. Diffusion Tractography,DTI MRI,Diffusion Tensor MRI,Diffusion Tensor Magnetic Resonance Imaging,Diffusion Tensor MRIs,Imaging, Diffusion Tensor,MRI, Diffusion Tensor,Tractography, Diffusion
D038524 Diffusion Magnetic Resonance Imaging A diagnostic technique that incorporates the measurement of molecular diffusion (such as water or metabolites) for tissue assessment by MRI. The degree of molecular movement can be measured by changes of apparent diffusion coefficient (ADC) with time, as reflected by tissue microstructure. Diffusion MRI has been used to study BRAIN ISCHEMIA and tumor response to treatment. Magnetic Resonance Imaging, Diffusion,Diffusion MRI,Diffusion Weighted MRI,Diffusion MRIs,MRI, Diffusion Weighted

Related Publications

Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
July 2008, NeuroImage,
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
January 2002, AJR. American journal of roentgenology,
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
March 2012, Biochimica et biophysica acta,
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
October 2002, AJNR. American journal of neuroradiology,
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
September 2012, Pediatric research,
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
November 2010, NeuroImage,
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
October 2005, AJNR. American journal of neuroradiology,
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
February 2005, Acta radiologica (Stockholm, Sweden : 1987),
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
September 2002, Journal of neurosurgery,
Wenxu Qi, and Song Gao, and Caixia Liu, and Gongyu Lan, and Xue Yang, and Qiyong Guo
February 2011, AJNR. American journal of neuroradiology,
Copied contents to your clipboard!