The voltage-dependence of transmitter release. 1986

S J Smith, and M P Charlton, and G J Augustine

In this paper we summarize voltage clamp experiments characterizing transmission at the squid giant synapse. The overall goal of these experiments was to determine a synaptic transfer curve relating presynaptic Ca currents (ICa) to resultant postsynaptic responses. Here we focus on interpreting the phenomenon of transfer curve "hysteresis", which has been proposed to result from an intrinsic voltage-dependence of the transmitter release process. One potential problem in analyzing transfer curves comes from contamination of presynaptic Ca currents by outward currents. Linear leakage currents can be measured and taken into account, but after such corrections ICa measurements at positive potentials are still distorted by outward currents. The presence of residual outward currents at positive potentials results in a voltage-dependent bias in ICa measurement and probably contributes to transfer curve hysteresis. A pharmacological procedure which subtracts currents other than those flowing through Ca channels can be used to circumvent this bias in ICa measurement. Gradients in membrane potential along a nominally voltage clamped presynaptic terminal can allow inappropriate release of transmitter from poorly clamped regions of the terminal. Release from such regions may also contribute to transfer-curve hysteresis when standard voltage clamp methods are employed. A method of localized Ca application which restricts transmitter release to well-clamped presynaptic regions can be used to avoid this problem. Transfer curves measured using refined procedures for ICa measurement and suppression of voltage gradient effects on release exhibit little hysteresis.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D049832 Decapodiformes A superorder of CEPHALOPODS comprised of squid, cuttlefish, and their relatives. Their distinguishing feature is the modification of their fourth pair of arms into tentacles, resulting in 10 limbs. Cuttlefish,Illex,Sepiidae,Squid,Todarodes,Cuttlefishs,Decapodiforme,Illices,Squids,Todarode
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

S J Smith, and M P Charlton, and G J Augustine
July 1985, Canadian journal of physiology and pharmacology,
S J Smith, and M P Charlton, and G J Augustine
February 1986, Science (New York, N.Y.),
S J Smith, and M P Charlton, and G J Augustine
May 1993, Biochemical Society transactions,
S J Smith, and M P Charlton, and G J Augustine
October 1996, The Journal of physiology,
S J Smith, and M P Charlton, and G J Augustine
January 1997, Molecular neurobiology,
S J Smith, and M P Charlton, and G J Augustine
May 1979, The Journal of physiology,
S J Smith, and M P Charlton, and G J Augustine
September 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S J Smith, and M P Charlton, and G J Augustine
September 1984, Neuroscience letters,
S J Smith, and M P Charlton, and G J Augustine
August 2000, Nature,
S J Smith, and M P Charlton, and G J Augustine
October 2007, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!