Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. 2017

Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
Food Biosciences Department, Teagasc Food Research Centre, Cork, Ireland.

In this pilot study, we determined the core fecal microbiota composition and overall microbiota diversity of domesticated herbivorous animals of three digestion types: hindgut fermenters, ruminants, and monogastrics. The 42 animals representing 10 animal species were housed on a single farm in Ireland and all the large herbivores consumed similar feed, harmonizing two of the environmental factors that influence the microbiota. Similar to other mammals, the fecal microbiota of all these animals was dominated by the Firmicutes and Bacteroidetes phyla. The fecal microbiota spanning all digestion types comprised 42% of the genera identified. Host phylogeny and, to a lesser extent, digestion type determined the microbiota diversity in these domesticated herbivores. This pilot study forms a platform for future studies into the microbiota of nonbovine and nonequine domesticated herbivorous animals.

UI MeSH Term Description Entries
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000829 Animals, Domestic Animals which have become adapted through breeding in captivity to a life intimately associated with humans. They include animals domesticated by humans to live and breed in a tame condition on farms or ranches for economic reasons, including LIVESTOCK (specifically CATTLE; SHEEP; HORSES; etc.), POULTRY; and those raised or kept for pleasure and companionship, e.g., PETS; or specifically DOGS; CATS; etc. Farm Animals,Domestic Animals,Domesticated Animals,Animal, Domestic,Animal, Domesticated,Animal, Farm,Animals, Domesticated,Animals, Farm,Domestic Animal,Domesticated Animal,Farm Animal
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D012417 Rumen The first stomach of ruminants. It lies on the left side of the body, occupying the whole of the left side of the abdomen and even stretching across the median plane of the body to the right side. It is capacious, divided into an upper and a lower sac, each of which has a blind sac at its posterior extremity. The rumen is lined by mucous membrane containing no digestive glands, but mucus-secreting glands are present in large numbers. Coarse, partially chewed food is stored and churned in the rumen until the animal finds circumstances convenient for rumination. When this occurs, little balls of food are regurgitated through the esophagus into the mouth, and are subjected to a second more thorough mastication, swallowed, and passed on into other parts of the compound stomach. (From Black's Veterinary Dictionary, 17th ed) Rumens
D012418 Ruminants A suborder of the order ARTIODACTYLA whose members have the distinguishing feature of a four-chambered stomach, including the capacious RUMEN. Horns or antlers are usually present, at least in males. Goats, Mountain,Ruminantia,Oreamnos americanus,Goat, Mountain,Mountain Goat,Mountain Goats,Ruminant
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D044822 Biodiversity The variety of all native living organisms and their various forms and interrelationships. Biological Diversity,Diversity, Biological

Related Publications

Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
January 2020, Animal science journal = Nihon chikusan Gakkaiho,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
January 2014, Virusdisease,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
June 2003, Oecologia,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
June 1980, Biochemical Society transactions,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
June 1980, Mutation research,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
January 1977, Archiv fur Tierernahrung,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
November 2007, Applied and environmental microbiology,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
December 2008, Nutrition research reviews,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
April 2012, The Journal of biological chemistry,
Michelle M O' Donnell, and Hugh M B Harris, and R Paul Ross, and Paul W O'Toole
April 2022, Molecular ecology,
Copied contents to your clipboard!