A model for combined morphological and functional investigations on the isolated mediobasal rat hypothalamus. 1987

C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi

We have developed a model for combined morphological and functional in vitro studies of the isolated mediobasal hypothalamus (MBH) by considering two prerequisites: (1) the tissue must be well preserved, free of morphological artefacts and functionally unimpaired until the end of the in vitro incubation, and (2) the tissue must be processed for morphology in optimal conditions. To test our model we have studied some aspects of the luteinizing hormone-releasing hormone (LHRH) system in 4-month-old male Sprague-Dawley rats. After decapitation the MBH was isolated and put in a flask containing 0.5 ml Hepes-buffered Locke's medium gassed by 5 ml/min of O2/CO2 (95%/5%) and shaken in a water bath at 37 degrees C. After a 10-min washing, the medium was changed twice at an interval of 20 min. After the in vitro incubation the tissue was satisfactorily preserved as judged by light- and electron-microscopic analysis. LHRH, somatostatin and thyrotropin-releasing hormone could be demonstrated by alkaline phosphatase or peroxidase-antiperoxidase immunohistochemistry on semithin sections and by immunogold technique on thin sections. The LHRH secretion was close to basal values after 30 min of incubation (22.1 +/- 4.8 pg/MBH) and then remained constant for another period of 20 min (17.6 +/- 2.6 pg/MBH). During the second 20 min of incubation LHRH secretion increased in presence of 61.6 mM K+ (110.7 +/- 8.7 pg/MBH). Thus the isolated hypothalamus was excitable until the end of the in vitro incubation. We conclude that this model can be successfully used for combined morphological and functional studies.

UI MeSH Term Description Entries
D007033 Hypothalamus, Middle Middle portion of the hypothalamus containing the arcuate, dorsomedial, ventromedial nuclei, the TUBER CINEREUM and the PITUITARY GLAND. Hypothalamus, Medial,Intermediate Hypothalamic Region,Hypothalamic Region, Intermediate,Hypothalamic Regions, Intermediate,Intermediate Hypothalamic Regions,Medial Hypothalamus,Middle Hypothalamus,Region, Intermediate Hypothalamic,Regions, Intermediate Hypothalamic
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
August 1995, Journal of neuroendocrinology,
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
March 1999, Neuroscience,
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
January 2002, Neuroscience,
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
January 1987, In vivo (Athens, Greece),
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
April 1989, Biulleten' eksperimental'noi biologii i meditsiny,
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
January 1992, European journal of morphology,
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
January 1988, Pharmacology & therapeutics,
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
November 1978, The Journal of comparative neurology,
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
May 1992, European journal of pharmacology,
C E Boujon, and G E Bestetti, and M J Reymond, and G L Rossi
January 1984, Acta neuropathologica,
Copied contents to your clipboard!