CaV2 channel subtype expression in rat sympathetic neurons is selectively regulated by α2δ subunits. 2017

Mallory B Scott, and Paul J Kammermeier
a Departments of Biochemistry and Biophysics , University of Rochester Medical Center , Rochester , NY , USA.

Type two voltage gated calcium (CaV2) channels are the primary mediators of neurotransmission at neuronal presynapses, but their function at neural soma is also important in regulating excitability. 1 Mechanisms that regulate CaV2 channel expression at synapses have been studied extensively, which motivated us to perform similar studies in the soma. Rat sympathetic neurons from the superior cervical ganglion (SCG) natively express CaV2.2 and CaV2.3. 2 We noted previously that heterologous expression of CaV2.1 but not CaV2.2 results in increased calcium current in SCG neurons. 3 In the present study, we extended these observations to show that both CaV2.1 and CaV2.3 expression resulted in increased calcium currents while CaV2.2 expression did not. Further, CaV2.1 could displace native CaV2.2 channels, but CaV2.3 expression could not. Heterologous expression of the individual accessory subunits α2δ-1, α2δ-2, α2δ-3, or β4 alone failed to increase current density, suggesting that the calcium current ceiling when CaV2.2 was over-expressed was not due to lack of these subunits. Interestingly, introduction of recombinant α2δ subunits produced surprising effects on displacement of native CaV2.2 by recombinant channels. Both α2δ-1 and α2δ-2 seemed to promote CaV2.2 displacement by recombinant channel expression, while α2δ-3 appeared to protect CaV2.2 from displacement. Thus, we observe a selective prioritization of CaV channel functional expression in neurons by specific α2δ subunits. These data highlight a new function for α2δ subtypes that could shed light on subtype selectivity of CaV2 membrane expression.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D020864 Calcium Channels, N-Type CALCIUM CHANNELS that are concentrated in neural tissue. Omega toxins inhibit the actions of these channels by altering their voltage dependence. N-Type Calcium Channels,Neural-Type Calcium Channels,N-Type Calcium Channel,N-Type VDCC,N-Type Voltage-Dependent Calcium Channels,Calcium Channel, N-Type,Calcium Channels, N Type,Calcium Channels, Neural-Type,Channel, N-Type Calcium,Channels, N-Type Calcium,Channels, Neural-Type Calcium,N Type Calcium Channel,N Type Calcium Channels,N Type VDCC,N Type Voltage Dependent Calcium Channels,Neural Type Calcium Channels,VDCC, N-Type
D021122 Protein Subunits Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly. Protomers,Protein Subunit,Protomer,Subunit, Protein,Subunits, Protein

Related Publications

Mallory B Scott, and Paul J Kammermeier
October 2010, Current opinion in neurobiology,
Mallory B Scott, and Paul J Kammermeier
January 2023, Handbook of experimental pharmacology,
Mallory B Scott, and Paul J Kammermeier
July 2023, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Mallory B Scott, and Paul J Kammermeier
January 1996, Journal of molecular neuroscience : MN,
Mallory B Scott, and Paul J Kammermeier
March 1996, Brain research,
Mallory B Scott, and Paul J Kammermeier
May 1993, Brain research. Developmental brain research,
Mallory B Scott, and Paul J Kammermeier
September 2001, Neuroscience letters,
Mallory B Scott, and Paul J Kammermeier
August 2012, Journal of neuroscience research,
Mallory B Scott, and Paul J Kammermeier
April 1997, Journal of neurophysiology,
Mallory B Scott, and Paul J Kammermeier
October 1998, Neuroscience letters,
Copied contents to your clipboard!