Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone. 1987

S Mellander, and M Maspers, and J Björnberg, and L O Andersson

The controversial hypothesis that capillary pressure (Pc) is autoregulated in response to arterial pressure (PA) alterations was tested in sympathectomized cat skeletal muscle by studying the relation between Pc and PA under conditions of well preserved vascular tone and reactivity, during papaverine-induced maximal vasodilatation (passive vascular bed), and during impaired vascular reactivity caused by preparatory surgery, or by low dose isoproterenol administration. The latter states resembled such under which Pc autoregulation unintentionally seems to have been studied previously. Capillary pressure was assessed with the Pcvenule method for continuous direct pressure recordings from capillaries/postcapillary venules (Mellander et al. 1987) and simultaneously derived from observed net transvascular fluid flux divided by CFC. Resistances in the whole vascular bed and in its pre- and postcapillary segments (Ra and Rv) were determined from recordings of blood flow, PA, Pc, and PV. During preserved vascular reactivity, Pc was found to be virtually constant, that is, almost perfectly autoregulated, over the PA range from 50 to 180 mmHg, whereas in the passive vascular bed there was a direct linear relation between Pc and PA (y = 0.137x + 11.69; r = 0.97). The delta Pc/delta PA ratio was about 1/70 in the normal reactive, and 1/7 in the passive, vascular bed, implying an increase in Pc by 1 mmHg for every 70 mmHg and every 7 mmHg increase in PA, respectively. Capillary pressure autoregulation was explained by precise adjustments of Ra/Rv in relation to PA elicited by myogenic and metabolic regulatory mechanisms. This protective reaction against plasma loss during increased PA was abolished during maximal vasodilation, and was much impaired by surgical trauma, partly via a beta-adrenergic inhibitory effect, and by isoproterenol, in turn causing gross transcapillary fluid fluxes. The latter findings might explain failing Pc autoregulation in some previous studies undertaken under seemingly similar conditions.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010208 Papaverine An alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. It is a direct-acting smooth muscle relaxant used in the treatment of impotence and as a vasodilator, especially for cerebral vasodilation. The mechanism of its pharmacological actions is not clear, but it apparently can inhibit phosphodiesterases and it may have direct actions on calcium channels. Cerespan,Papaverine Hydrochloride,Pavabid,Pavatym,Hydrochloride, Papaverine
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D002200 Capillary Resistance The vascular resistance to the flow of BLOOD through the CAPILLARIES portions of the peripheral vascular bed. Capillary Resistances,Resistance, Capillary,Resistances, Capillary
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006874 Hydrostatic Pressure The pressure due to the weight of fluid. Hydrostatic Pressures,Pressure, Hydrostatic,Pressures, Hydrostatic
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic

Related Publications

S Mellander, and M Maspers, and J Björnberg, and L O Andersson
March 1974, Microvascular research,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
December 1979, Acta physiologica Scandinavica,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
May 1974, Acta physiologica Scandinavica,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
June 1985, The American journal of physiology,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
May 1987, Microvascular research,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
June 2001, American journal of physiology. Heart and circulatory physiology,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
December 2015, American journal of physiology. Heart and circulatory physiology,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
January 1979, Acta physiologica Scandinavica. Supplementum,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
December 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
S Mellander, and M Maspers, and J Björnberg, and L O Andersson
December 1982, The American journal of physiology,
Copied contents to your clipboard!