Pancreatic somatostatin, glucagon and insulin during post-hatch growth in the duck (Anas platyrhynchos). 1987

C Foltzer, and S Harvey, and P Mialhe

Pancreatic somatostatin-like immunoreactivity (SLI), immunoreactive insulin (IRI) and glucagon-like immunoreactivity (GLI) were measured during growth in ducks. The content of each hormone increased progressively but at different rates in the dorsal, ventral and splenic lobes of the pancreas. In the almost fully grown duck, the splenic lobe contained 80 and 63% of the total content of GLI and SLI respectively but low levels of IRI (23%), which were highest in the dorsal lobe (53%). In contrast to the hormonal content, only total GLI concentrations increased during development, the SLI concentrations remaining stable and IRI concentrations declining during growth. Gel filtration of pancreatic extracts indicated that most of the SLI in the pancreas of young and adult birds was somatostatin-14, although somatostatin-28 was present in the ventral lobe of young birds and larger molecular forms were present in the ventral and dorsal lobes. These changes in pancreatic hormonal content and concentration are dissimilar to age-related changes in SLI, GLI and IRI previously observed in the plasma of ducks. Plasma levels of pancreatic hormones may thus be controlled by hormonal and/or neutral factors during post-hatch growth.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D004372 Ducks A water bird in the order Anseriformes (subfamily Anatinae (true ducks)) with a broad blunt bill, short legs, webbed feet, and a waddling gait. Duck
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006128 Growth Gradual increase in the number, the size, and the complexity of cells of an individual. Growth generally results in increase in ORGAN WEIGHT; BODY WEIGHT; and BODY HEIGHT.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

C Foltzer, and S Harvey, and P Mialhe
May 1976, Cell and tissue research,
C Foltzer, and S Harvey, and P Mialhe
January 1989, Comparative biochemistry and physiology. B, Comparative biochemistry,
C Foltzer, and S Harvey, and P Mialhe
January 1998, Avian pathology : journal of the W.V.P.A,
C Foltzer, and S Harvey, and P Mialhe
October 1972, General and comparative endocrinology,
C Foltzer, and S Harvey, and P Mialhe
January 2007, Folia biologica,
C Foltzer, and S Harvey, and P Mialhe
January 1996, Acta anatomica,
C Foltzer, and S Harvey, and P Mialhe
January 1989, Comparative biochemistry and physiology. A, Comparative physiology,
C Foltzer, and S Harvey, and P Mialhe
July 1984, Respiration physiology,
C Foltzer, and S Harvey, and P Mialhe
January 1986, Vision research,
Copied contents to your clipboard!