Reticulospinal neurones activate excitatory amino acid receptors. 1987

J T Buchanan, and L Brodin, and N Dale, and S Grillner

Paired intracellular recordings were used to study the monosynaptic excitatory postsynaptic potentials (EPSP) in lamprey motoneurones evoked by stimulation of single reticulospinal Müller and Mauthner cells. The chemical component of the synaptic potentials was depressed by both application of the non-selective excitatory amino acid antagonists kynurenic acid and cis-2,3-piperidine dicarboxylate. The N-methyl-D-aspartate (NMDA) antagonists Mg2+ and 2-amino-5-phosphonovalerate caused a selective depression of a late component of the EPSP. Thus, fast-conducting reticulospinal neurones appear to release an excitatory amino acid acting at both NMDA and non-NMDA receptors.

UI MeSH Term Description Entries
D007736 Kynurenic Acid A broad-spectrum excitatory amino acid antagonist used as a research tool. Kynurenate,Acid, Kynurenic
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D010875 Pipecolic Acids Acids, Pipecolic
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

J T Buchanan, and L Brodin, and N Dale, and S Grillner
March 2000, Pharmaceutica acta Helvetiae,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
January 1981, Progress in clinical and biological research,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
September 1994, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
January 1991, Journal de pharmacie de Belgique,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
March 1987, Neuroscience letters,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
March 1988, Brain research,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
October 1995, Brain research,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
October 1964, The Journal of physiology,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
August 1990, Trends in pharmacological sciences,
J T Buchanan, and L Brodin, and N Dale, and S Grillner
January 1993, Schizophrenia bulletin,
Copied contents to your clipboard!