Enzymes of glutathione metabolism as biochemical markers during hepatocarcinogenesis. 1987

S Hendrich, and H C Pitot

Enzymes of glutathione metabolism, particularly gamma-glutamyltransferase (GGT) and glutathione S-transferase (GST), play a role in multistage hepatocarcinogenesis. The enhanced expression of these enzymes in preneoplastic altered hepatic foci, nodules, and hepatocellular carcinomas has been demonstrated after treatment with a variety of initiating and promoting agents. Glutathione is necessary for the detoxification of xenobiotics and carcinogens and for cell replication. Induction of GGT in altered hepatocytes may permit these cells to utilize extracellular glutathione to preserve their internal glutathione levels. GST induction allows glutathione utilization for the protection of the altered hepatocyte in an environment of exposure to xenobiotics, such as promoting agents. Thus, the combined effects of GGT and GST, in a toxic environment, may provide for the enhanced proliferation observed in preneoplastic hepatocytes. New clinical and research opportunities may involve the use of GGT and the placental isozyme of GST (PGST) as markers of preneoplasia and neoplasia in humans. Many factors, such as hormones, diet, and exposure to initiating and promoting agents, influence GGT and GST expression. The recent cloning of cDNAs to GGT and PGST offers opportunities for the study of factors involved in the genetic expression of these two enzymes. Coupled with the use of hepatocyte culture and transplantation, the factors involved at the molecular level in the creation of hepatocellular neoplasia may be discovered.

UI MeSH Term Description Entries
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011230 Precancerous Conditions Pathological conditions that tend eventually to become malignant. Preneoplastic Conditions,Condition, Preneoplastic,Conditions, Preneoplastic,Preneoplastic Condition,Condition, Precancerous,Conditions, Precancerous,Precancerous Condition
D005723 gamma-Glutamyltransferase An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid. GGTP,Glutamyl Transpeptidase,gammaglutamyltransferase,gamma-Glutamyl Transpeptidase,Transpeptidase, Glutamyl,Transpeptidase, gamma-Glutamyl,gamma Glutamyl Transpeptidase,gamma Glutamyltransferase
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Hendrich, and H C Pitot
May 1984, Cell biology international reports,
S Hendrich, and H C Pitot
September 1993, Asia Pacific journal of clinical nutrition,
S Hendrich, and H C Pitot
April 1994, Bulletin of environmental contamination and toxicology,
S Hendrich, and H C Pitot
July 1988, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
S Hendrich, and H C Pitot
July 1994, Carcinogenesis,
S Hendrich, and H C Pitot
January 1984, IARC scientific publications,
S Hendrich, and H C Pitot
March 2007, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan,
Copied contents to your clipboard!