Effect of berberine on lipopolysaccharide-induced monocyte chemotactic protein-1 and interleukin-8 expression in a human retinal pigment epithelial cell line. 2018

Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
Department of Ophthalmology, Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun Road East, Hangzhou, 310016, Zhejiang Province, China. cuihushan@hotmail.com.

OBJECTIVE In this study, we elucidated the effects of berberine, a major alkaloid component contained in medicinal herbs, such as Phellodendri Cortex and Coptidis Rhizoma, on expression of monocyte chemotactic protein-1 (MCP-1) and interleukin-8 (IL-8) in a human retinal pigment epithelial cell line (ARPE-19) caused by lipopolysaccharide (LPS) stimulation. METHODS ARPE-19 cells were cultured to confluence. Berberine and LPS were added to the medium. MCP-1 and IL-8 mRNA were measured by real-time polymerase chain reaction. MCP-1 and IL-8 protein concentrations in the media were measured using enzyme-linked immunosorbent assay. RESULTS After stimulation with LPS, MCP-1 and IL-8 mRNA in ARPE-19 cells reached maximum levels at 3 h, and MCP-1 and IL-8 protein in the culture media reached maximum levels at 24 h. Berberine dose-dependently inhibited MCP-1 and IL-8 mRNA expression of the cells and protein levels in the media stimulated with LPS. CONCLUSIONS These findings indicate that berberine inhibited the expression of MCP-1 and IL-8 induced by LPS.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008268 Macular Degeneration Degenerative changes in the RETINA usually of older adults which results in a loss of vision in the center of the visual field (the MACULA LUTEA) because of damage to the retina. It occurs in dry and wet forms. Maculopathy,Maculopathy, Age-Related,Age-Related Macular Degeneration,Age-Related Maculopathies,Age-Related Maculopathy,Macular Degeneration, Age-Related,Macular Dystrophy,Maculopathies, Age-Related,Age Related Macular Degeneration,Age Related Maculopathies,Age Related Maculopathy,Age-Related Macular Degenerations,Degeneration, Macular,Dystrophy, Macular,Macular Degeneration, Age Related,Macular Degenerations,Macular Dystrophies,Maculopathies,Maculopathy, Age Related
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001599 Berberine An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Umbellatine
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating

Related Publications

Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
January 2006, Ophthalmic research,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
August 2006, Life sciences,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
January 2005, Ophthalmic research,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
February 1997, Investigative ophthalmology & visual science,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
February 1997, Investigative ophthalmology & visual science,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
December 1997, Experimental eye research,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
January 2007, Ophthalmic research,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
January 2007, Japanese journal of ophthalmology,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
June 1991, Laboratory investigation; a journal of technical methods and pathology,
Hu-Shan Cui, and Yu-Min Li, and Wei Fang, and Jiu-Ke Li, and Yuan-Min Dai, and Lian-Shun Zheng
October 2005, Human reproduction (Oxford, England),
Copied contents to your clipboard!