Effects of adrenergic agonists and antagonists on muscle O2 uptake and lactate metabolism. 1987

W N Stainsby, and C Sumners, and P D Eitzman

To investigate adrenergic receptor-mediated responses in dog gastrocnemius-plantaris muscle, several catecholamine agonists, isoproterenol, epinephrine, norepinephrine, and phenylephrine, and two antagonists, propranolol and phenoxybenzamine, were given during repetitive, isotonic, tetanic contractions. The response variables that were measured were muscle blood flow, shortening during constant load contractions, and arterial and venous O2 and lactate concentrations. The calculated variables were O2 uptake (VO2), net lactic acid output (L), and power output. In the control experiments, the contractions increased VO2 to approximately 50 times rest by 2 min. Thereafter, shortening, work, and VO2 declined together by 17% at 30 min, indicating muscle fatigue. L increased rapidly to nearly 0.8 mumol X g-1 X min-1 by 2 min, declined to 0.3-0.4 mumol X g-1 X min-1 by 7 min, and was like rest at 15, 22.5, and 30 min. The arterial lactate concentration rose steadily from rest to 30 min of contractions. Epinephrine infusion stopped the decline of VO2 during the contractions, but this effect was not observed with the other agonists. Propranolol decreased VO2 compared with controls at 22.5 and 30 min of contractions. Phenoxybenzamine decreased VO2 compared with controls at all times during contraction, and the decline with time was present. Coinfusion of epinephrine with propranolol reduced the decline in VO2 observed with propranolol alone. Both epinephrine and isoproterenol increased L compared with controls. This epinephrine response was antagonized by propranolol but enhanced by phenoxybenzamine. Both isoproterenol and epinephrine infusions increased arterial lactate concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005260 Female Females
D000322 Adrenergic Agonists Drugs that bind to and activate adrenergic receptors. Adrenomimetics,Adrenergic Agonist,Adrenergic Receptor Agonist,Adrenergic Receptor Agonists,Receptor Agonists, Adrenergic,Agonist, Adrenergic,Agonist, Adrenergic Receptor,Agonists, Adrenergic,Agonists, Adrenergic Receptor,Receptor Agonist, Adrenergic

Related Publications

W N Stainsby, and C Sumners, and P D Eitzman
April 1974, The Journal of pharmacology and experimental therapeutics,
W N Stainsby, and C Sumners, and P D Eitzman
January 1981, The Journal of pharmacology and experimental therapeutics,
W N Stainsby, and C Sumners, and P D Eitzman
January 1972, Coeur et medecine interne,
W N Stainsby, and C Sumners, and P D Eitzman
January 2001, Regional anesthesia and pain medicine,
W N Stainsby, and C Sumners, and P D Eitzman
October 1977, The Journal of pharmacology and experimental therapeutics,
W N Stainsby, and C Sumners, and P D Eitzman
June 1993, Biochemical pharmacology,
W N Stainsby, and C Sumners, and P D Eitzman
January 1983, Contemporary anesthesia practice,
W N Stainsby, and C Sumners, and P D Eitzman
January 2020, Biochemical pharmacology,
W N Stainsby, and C Sumners, and P D Eitzman
February 1987, Journal of neurochemistry,
W N Stainsby, and C Sumners, and P D Eitzman
January 1981, General pharmacology,
Copied contents to your clipboard!