Nucleotide sequence and expression of the pyrC gene of Escherichia coli K-12. 1987

H R Wilson, and P T Chan, and C L Turnbough

The pyrC gene of Escherichia coli K-12, which encodes the pyrimidine biosynthetic enzyme dihydroorotase, was cloned as part of a 1.6-kilobase-pair chromosomal fragment. The nucleotide sequence of this fragment was determined. An open reading frame encoding a 348-amino acid polypeptide (Mr = 38,827) was identified as the pyrC structural gene by comparing the amino acid composition predicted from the DNA sequence with that previously determined for the dihydroorotase subunit. The pyrC promoter was mapped by primer extension of in vivo transcripts. Transcriptional initiation was shown to occur within a region located 36 to 39 base pairs upstream of the pyrC structural gene. Pyrimidine availability appears to affect the use of the minor transcriptional initiation sites. The level of pyrC transcription and dihydroorotase synthesis was coordinately derepressed by pyrimidine limitation, indicating that regulation occurs, at least primarily, at the transcriptional level. Inspection of the pyrC nucleotide sequence indicates that gene expression is not regulated by an attenuation control mechanism similar to that described for the pyrBI operon and the pyrE gene. A possible mechanism of transcriptional control involving a common repressor protein is suggested by the identification of a highly conserved, operatorlike sequence in the promoter regions of pyrC and the other pyrimidine genes (i.e., pyrD and carAB) whose expression is negatively regulated by a cytidine nucleotide effector.

UI MeSH Term Description Entries
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D004080 Dihydroorotase An enzyme that, in the course of pyrimidine biosynthesis, catalyzes ring closure by removal of water from N-carbamoylaspartate to yield dihydro-orotic acid. EC 3.5.2.3. Carbamoylaspartic Dehydrase,Dihydro-Orotase,Dihydro-Orotate Amidohydrolase,Amidohydrolase, Dihydro-Orotate,Dehydrase, Carbamoylaspartic,Dihydro Orotase,Dihydro Orotate Amidohydrolase
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

H R Wilson, and P T Chan, and C L Turnbough
January 1989, Journal of bacteriology,
H R Wilson, and P T Chan, and C L Turnbough
November 1988, Journal of bacteriology,
H R Wilson, and P T Chan, and C L Turnbough
October 1988, Journal of bacteriology,
H R Wilson, and P T Chan, and C L Turnbough
August 1981, Nucleic acids research,
H R Wilson, and P T Chan, and C L Turnbough
November 1993, Biochimica et biophysica acta,
H R Wilson, and P T Chan, and C L Turnbough
July 1985, Journal of bacteriology,
H R Wilson, and P T Chan, and C L Turnbough
September 1981, Journal of bacteriology,
H R Wilson, and P T Chan, and C L Turnbough
January 1983, The EMBO journal,
H R Wilson, and P T Chan, and C L Turnbough
February 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!