Somatostatin does not alter insulin-mediated glucose disposal. 1987

G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe

We examined the effect of somatostatin (SRIH) infusion on insulin-mediated glucose disposal (Rd) in normal young subjects (n = 8) to determine the influence of SRIH on insulin action. Paired 3-h euglycemic insulin clamp studies were performed in random order employing insulin alone (25 mU/m2 X min) or insulin with SRIH (250 micrograms/h) and replacement of basal glucagon (0.4 ng/kg X min). Basal plasma glucose, insulin, glucagon (IRG), and GH concentrations, hepatic glucose production, and Rd were similar on each occasion. Steady state (10-180 min) plasma insulin insulin alone, 283 +/- 10 (+/- SEM); insulin, IRG, and SRIH, 284 +/- 10 pmol/L) and glucagon levels (insulin alone, 84 +/- 7; insulin, IRG, and SRIH, 82 +/- 7 ng/L) were similar. Hepatic glucose production (insulin alone, 0.66 +/- 0.12; insulin, IRG, and SRIH, 0.78 +/- 0.48 mg/kg X min) and Rd (insulin alone, 8.16 +/- 0.62; insulin, IRG, and SRIH, 8.17 +/- 0.61 mg/kg X min) were not different at steady state. We conclude that SRIH infusion with glucagon replacement does not augment insulin-mediated glucose disposal in normal young subjects at physiological insulin levels.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
May 2007, Fertility and sterility,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
January 1987, Diabetes,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
January 1985, Journal of cardiovascular pharmacology,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
November 2002, The American journal of clinical nutrition,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
October 1996, Nutrition reviews,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
June 1992, Metabolism: clinical and experimental,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
January 2019, The Journal of clinical endocrinology and metabolism,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
January 1990, Upsala journal of medical sciences,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
November 1985, Diabetologia,
G S Meneilly, and D Elahi, and K L Minaker, and J W Rowe
January 2015, PloS one,
Copied contents to your clipboard!