Endothelial Cells Promote Formation of Medulloblastoma Stem-Like Cells via Notch Pathway Activation. 2017

Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
Department of Neurosurgery, Henan Provincial People's Hospital, Weiwu Rode No.7, Zhengzhou, Henan, 450003, China. vmyao3000@sina.com.

The aim of the study is to investigate whether endothelial cells (ECs) promoted the capacity of stem-like cell formation in medulloblastoma (MB) and whether the mechanism of action was associated with mediation of Notch signaling pathway. Co-culture experiment was conducted to particularly understand the potential role of ECs in promoting phenotype and gene expression of MB stem-like cells. Self-renewal capacity and tumor cell population were measured by sphere-forming assay and flow cytometry, respectively. To further clarify the effects of ECs on the formation of MB stem-like cells, the expression of genes and protein in MB stem-like cells (CCND1, CDK6, c-MYC, and Bmi-1) and Notch (Notch2, Jagged 1, Hes-1, and Hey-2) was quantified by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Also, observed mediation of ECs in regulation of tumor cell stemness by Notch activation was observed when the co-cultures were treated with γ-secretase inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT)). Further investigation was conducted for the effects of ECs on the tumorigenesis in vivo of MB cells when co-cultures were inoculated into a nude mouse after treated with DAPT. Afterwards, tumor size and volume were measured. The sphere-forming rate and cell ratio of stem-like cells were significantly increased. Furthermore, the expression of genes and protein in stem-like cells and Notch was obviously upregulated although treated with γ-secretase inhibitor. Moreover, tumor size and volume were dramatically magnified. This study revealed that Notch pathway activation played a key role in the formation of stem-like cells in MB and had valuable meaning for further investigation of targeted therapies.

UI MeSH Term Description Entries
D008527 Medulloblastoma A malignant neoplasm that may be classified either as a glioma or as a primitive neuroectodermal tumor of childhood (see NEUROECTODERMAL TUMOR, PRIMITIVE). The tumor occurs most frequently in the first decade of life with the most typical location being the cerebellar vermis. Histologic features include a high degree of cellularity, frequent mitotic figures, and a tendency for the cells to organize into sheets or form rosettes. Medulloblastoma have a high propensity to spread throughout the craniospinal intradural axis. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2060-1) Arachnoidal Cerebellar Sarcoma, Circumscribed,Medulloblastoma, Desmoplastic,Medullomyoblastoma,Sarcoma, Cerebellar, Circumscribed Arachnoidal,Medulloblastoma, Adult,Medulloblastoma, Childhood,Melanocytic Medulloblastoma,Adult Medulloblastoma,Adult Medulloblastomas,Childhood Medulloblastoma,Childhood Medulloblastomas,Desmoplastic Medulloblastoma,Desmoplastic Medulloblastomas,Medulloblastoma, Melanocytic,Medulloblastomas,Medulloblastomas, Adult,Medulloblastomas, Childhood,Medulloblastomas, Desmoplastic,Medulloblastomas, Melanocytic,Medullomyoblastomas,Melanocytic Medulloblastomas
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014411 Neoplastic Stem Cells Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS. Cancer Stem Cells,Colony-Forming Units, Neoplastic,Stem Cells, Neoplastic,Tumor Stem Cells,Neoplastic Colony-Forming Units,Tumor Initiating Cells,Cancer Stem Cell,Cell, Cancer Stem,Cell, Neoplastic Stem,Cell, Tumor Initiating,Cell, Tumor Stem,Cells, Cancer Stem,Cells, Neoplastic Stem,Cells, Tumor Initiating,Cells, Tumor Stem,Colony Forming Units, Neoplastic,Colony-Forming Unit, Neoplastic,Initiating Cell, Tumor,Initiating Cells, Tumor,Neoplastic Colony Forming Units,Neoplastic Colony-Forming Unit,Neoplastic Stem Cell,Stem Cell, Cancer,Stem Cell, Neoplastic,Stem Cell, Tumor,Stem Cells, Cancer,Stem Cells, Tumor,Tumor Initiating Cell,Tumor Stem Cell,Unit, Neoplastic Colony-Forming,Units, Neoplastic Colony-Forming
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
September 2014, The Journal of pathology,
Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
August 2016, Oncotarget,
Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
December 2018, Cellular reprogramming,
Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
January 2018, Cell death & disease,
Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
July 2022, PLoS computational biology,
Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
December 2020, Stem cell research & therapy,
Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
July 2012, Biochemical and biophysical research communications,
Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
February 2014, Stem cell research & therapy,
Yong Wang, and Yushe Wang, and Hang Chen, and Qinghua Liang
March 2022, Neuromolecular medicine,
Copied contents to your clipboard!