A human papilloma virus type 11 transcript encoding an E1--E4 protein. 1987

M Nasseri, and R Hirochika, and T R Broker, and L T Chow

The human papilloma virus (HPV) associated with a genital wart (condyloma acuminatum) was determined to be type 11. The majority of the viral DNA molecules were monomeric circles present in the cells at high copy number, as demonstrated by one- and two-dimensional agarose gell electrophoretic separation followed by Southern blot analysis. A cDNA library in phage lambda gt11 was constructed from poly(A)-selected mRNA recovered from the tissue. Recombinant clones corresponding to the most abundant 1.2-kb viral mRNA species detected by Northern blot hybridization and by electron microscopic analysis of R loops were isolated and their nucleotide sequence was determined. Comparison to the prototype HPV-11 DNA sequence revealed that this message consisted of two exons. The promotor-proximal exon spanned nucleotides 716 through 847 and the distal exon included nucleotides 3325 through 4390 or 4392. The mRNAs were alternatively polyadenylated after either of these latter two sites, in both cases following a G and preceding a U residue. Fourteen or sixteen bases upstream from the poly(A) was the hexanucleotide AGUAAA, which apparently serves as the signal for cleavage and polyadenylation of the nascent message. The splice donor and acceptor sites conformed to the usual /GU. . .AG/pattern. The exons joined open reading frame (ORF) E1, which contributed the initiation codon and four additional triplets, to ORF E4, which specified 85 amino acids to encode a protein of 10,022 Da. The cDNA also contained the ORFs E5a and E5b toward the 3' end. The complete sequence of the cDNA revealed three single-base changes from the prototype HPV-11, two resulting in altered amino acids in E4. Neither affects the coding potential of the overlapping E2 ORF. The function of the E1--E4 protein is unknown.

UI MeSH Term Description Entries
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D003218 Condylomata Acuminata Sexually transmitted form of anogenital warty growth caused by the human papillomaviruses. Genital Warts,Venereal Warts,Warts, Genital,Warts, Venereal,Genital Wart,Venereal Wart,Wart, Genital,Wart, Venereal
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M Nasseri, and R Hirochika, and T R Broker, and L T Chow
August 2006, Virology,
M Nasseri, and R Hirochika, and T R Broker, and L T Chow
October 1999, Internal medicine (Tokyo, Japan),
M Nasseri, and R Hirochika, and T R Broker, and L T Chow
July 2004, Journal of virology,
M Nasseri, and R Hirochika, and T R Broker, and L T Chow
February 1986, The EMBO journal,
M Nasseri, and R Hirochika, and T R Broker, and L T Chow
August 1996, Virology,
Copied contents to your clipboard!