Regulation of gastric acid secretion at the cellular level. 1987

A Wollin

Gastric acid secretion is controlled by neurocrine, endocrine, and paracrine pathways. At the organ level, the neurocrine and endocrine systems provide long-range regulation; and near the target cell the paracrine system appears to predominate. The integration of the regulatory commands from these various pathways is complex and, as a result, some pathways have not yet been clearly defined. Present evidence suggests that acetylcholine from mucosal nerve endings acts by 2 possible pathways. It interacts with muscarinic receptors on the oxyntic cell stimulating acid production. It is also capable of releasing histamine from the paracrine cell in the gastric glands, and histamine then acts on the oxyntic cells. The endocrine effect on acid secretion mediated by gastrin is less clear. Gastrin binds to oxyntic cell plasma membranes but has little or no direct stimulatory effect on the acid-secreting cell. It is assumed that its stimulatory action on acid secretion in vivo is mediated primarily by increasing histamine levels near the oxyntic cells. Histamine, released from paracrine cells near the oxyntic cells, is probably controlled by acetylcholine and gastrin, but other mechanisms are being explored. Histamine binds to the H2-receptors on the oxyntic cell plasma membrane, activating adenylate cyclase, which catalyzes the production of the intracellular messenger cyclic AMP. Cyclic AMP in turn activates a specific protein kinase, which phosphorylates a yet unknown substrate for the propagation of the stimulatory signal. The action of acetylcholine on the oxyntic cell receptors does not stimulate the production of cyclic AMP; instead, it acts on Ca++ channels, increasing the Ca++ entrance into the cell, which initiates the intracellular events.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010295 Parietal Cells, Gastric Rounded or pyramidal cells of the GASTRIC GLANDS. They secrete HYDROCHLORIC ACID and produce gastric intrinsic factor, a glycoprotein that binds VITAMIN B12. Gastric Parietal Cells,Oxyntic Cells,Cell, Gastric Parietal,Cell, Oxyntic,Cells, Gastric Parietal,Cells, Oxyntic,Gastric Parietal Cell,Oxyntic Cell,Parietal Cell, Gastric
D011970 Receptors, Histamine H2 A class of histamine receptors discriminated by their pharmacology and mode of action. Histamine H2 receptors act via G-proteins to stimulate ADENYLYL CYCLASES. Among the many responses mediated by these receptors are gastric acid secretion, smooth muscle relaxation, inotropic and chronotropic effects on heart muscle, and inhibition of lymphocyte function. (From Biochem Soc Trans 1992 Feb;20(1):122-5) Histamine H2 Receptors,H2 Receptors,Receptors, H2,H2 Receptors, Histamine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005744 Gastric Acid Hydrochloric acid present in GASTRIC JUICE. Hydrochloric Acid, Gastric,Acids, Gastric,Acids, Gastric Hydrochloric,Gastric Acids,Gastric Hydrochloric Acid,Gastric Hydrochloric Acids,Hydrochloric Acids, Gastric
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D005755 Gastrins A family of gastrointestinal peptide hormones that excite the secretion of GASTRIC JUICE. They may also occur in the central nervous system where they are presumed to be neurotransmitters. Gastrin
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D006635 Histamine H2 Antagonists Drugs that selectively bind to but do not activate histamine H2 receptors, thereby blocking the actions of histamine. Their clinically most important action is the inhibition of acid secretion in the treatment of gastrointestinal ulcers. Smooth muscle may also be affected. Some drugs in this class have strong effects in the central nervous system, but these actions are not well understood. Antihistaminics, H2,H2 Receptor Blockader,Histamine H2 Antagonist,Histamine H2 Blocker,Histamine H2 Receptor Antagonist,Histamine H2 Receptor Antagonists,Histamine H2 Receptor Blockader,Histamine H2 Receptor Blockaders,Antagonists, Histamine H2,Blockaders, Histamine H2 Receptor,H2 Receptor Blockaders,Histamine H2 Blockers,Receptor Antagonists, Histamine H2,Receptor Blockaders, H2,Antagonist, Histamine H2,Blockader, H2 Receptor,Blockaders, H2 Receptor,Blocker, Histamine H2,Blockers, Histamine H2,H2 Antagonist, Histamine,H2 Antagonists, Histamine,H2 Antihistaminics,H2 Blocker, Histamine,H2 Blockers, Histamine,Receptor Blockader, H2
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

A Wollin
January 1990, Acta physiologica et pharmacologica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y de la Asociacion Latinoamericana de Farmacologia,
A Wollin
November 1999, Current opinion in gastroenterology,
A Wollin
December 1995, Revista espanola de enfermedades digestivas,
A Wollin
November 1990, Revue medicale de la Suisse romande,
A Wollin
January 1979, Annual review of physiology,
A Wollin
June 1977, Federation proceedings,
A Wollin
December 1979, Proceedings of the National Academy of Sciences of the United States of America,
A Wollin
June 1986, Berliner und Munchener tierarztliche Wochenschrift,
A Wollin
December 2008, Current gastroenterology reports,
Copied contents to your clipboard!