Localization of immunoreactive tyrosine hydroxylase in the goldfish brain. 1987

P J Hornby, and D T Piekut, and L S Demski

This report describes the distribution of tyrosine hydroxylase immunoreactive (TH-ir) structures in the brain of the goldfish (Carassius auratus). The localization of TH-ir cell groups revealed by immunocytochemical techniques is largely in accordance with catecholamine distribution previously reported in teleosts by using monoamine fluorescence; however, in the telencephalon and diencephalon, several new cell groups are elucidated. In the telencephalon, TH-ir cell bodies are observed in the olfactory bulb, area ventralis telencephali, and the central zone of the area dorsalis telencephali. TH-ir fibers and terminals are moderately dense throughout the telencephalon except for a sparse innervation of the area dorsalis, pars medialis. Immunostained cells are present in the suprachiasmatic nucleus and magnocellular and parvicellular components of the preoptic nucleus. Immunoreactive fibers from preoptic cells can be traced caudally in two main tracts to the infundibulum. Dense immunoreactivity around cells in the pituitary provides anatomical support for catecholamine involvement in the neuroendocrine axis probably via preopticohypophysial connections. At middiencephalic levels, immunoreactive cells are present in the ventral thalamus, nucleus pretectalis periventricularis, pars ventralis, and paraventricular organ pars anterioris. In the caudal diencephalon, TH-ir cells are seen within the posterior tuberal nuclei and dorsal to posterior recess. No immunostained cells are observed in the midbrain. In the hindbrain, tyrosine hydroxylase containing cells comprise three groups similar to that described using Falck-Hillarp histofluorescence (Parent et al., '78), i.e., isthmal, central medullary, and medullospinal groups. Tyrosine hydroxylase immunoreactivity is interpreted as evidence for the presence of catecholamines and not only provides an anatomical basis for the functional significance of catecholamines in teleosts, but may be useful in elucidating homologous structures in tetrapod vertebrates, although certain sites of immunoreactivity may prove to be unique to teleosts.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D005260 Female Females
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P J Hornby, and D T Piekut, and L S Demski
September 1984, Neuroscience letters,
P J Hornby, and D T Piekut, and L S Demski
October 1992, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
P J Hornby, and D T Piekut, and L S Demski
March 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P J Hornby, and D T Piekut, and L S Demski
October 2009, Journal of fish biology,
P J Hornby, and D T Piekut, and L S Demski
June 1988, The Journal of comparative neurology,
P J Hornby, and D T Piekut, and L S Demski
February 1975, Proceedings of the National Academy of Sciences of the United States of America,
P J Hornby, and D T Piekut, and L S Demski
January 1993, Journal of chemical neuroanatomy,
P J Hornby, and D T Piekut, and L S Demski
November 2017, Journal of chemical neuroanatomy,
P J Hornby, and D T Piekut, and L S Demski
May 2002, The Journal of comparative neurology,
Copied contents to your clipboard!