Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis. 1987

S V Sutton, and R E Marquis

The proton-translocating, membrane ATPases of oral streptococci have been implicated in cytoplasmic pH regulation, acidurance, and cariogenicity. Membranes were isolated from Streptococcus mutans GS-5 and Streptococcus sanguis NCTC 10904 following salt-induced lysis of cells treated with lysozyme and mutanolysin. The ATPase activities of these membranes were 1.8 and 1.1 units per mg membrane protein, respectively. F1 ATPases were washed free from the membranes and purified by fast protein liquid chromatography (FPLC). Hydrolytic activities of the F1 ATPases were maximal at pH values between 6.0 and 6.6, whereas the membrane-bound enzymes had pH maxima of 7.5 (S. sanguis) and 6.0 (S. mutans). The F1 ATPases of the streptococci were similar to the well-characterized enzyme of Escherichia coli; they consisted of five different polypeptides and had apparent, aggregate molecular weights of from 335 to 350 Kd. The membrane-bound ATPases were characterized biochemically and found to be similar to those of proton-translocating ATPases of E. coli and Streptococcus faecalis. Km values for the membranes with respect to ATP were found to be 0.9 and 1.0 mmol/L for S. mutans and S. sanguis, respectively. Both enzymes had specificities for purine triphosphates and were active with a variety of divalent cations, although optimal activity occurred with ATP and Mg. The membrane-associated enzymes were sensitive to the inhibitors dicyclohexylcarbodiimide (DCCD) and azide, but insensitive to ouabain and vanadate.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011523 Protoplasts The protoplasm and plasma membrane of plant, fungal, bacterial or archaeon cells without the CELL WALL. Protoplast
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013295 Streptococcus mutans A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.
D013298 Streptococcus sanguis A gram-positive organism found in dental plaque, in blood, on heart valves in subacute endocarditis, and infrequently in saliva and throat specimens. L-forms are associated with recurrent aphthous stomatitis. Streptococcus sanguinis

Related Publications

S V Sutton, and R E Marquis
October 1983, Journal of general microbiology,
S V Sutton, and R E Marquis
April 1973, Archives of oral biology,
S V Sutton, and R E Marquis
October 1974, Journal of bacteriology,
S V Sutton, and R E Marquis
August 1971, Archives of oral biology,
S V Sutton, and R E Marquis
July 1975, Biochemical and biophysical research communications,
S V Sutton, and R E Marquis
May 1984, European journal of orthodontics,
S V Sutton, and R E Marquis
April 1997, Oral microbiology and immunology,
S V Sutton, and R E Marquis
October 1977, Acta pathologica et microbiologica Scandinavica. Section B, Microbiology,
Copied contents to your clipboard!