Expression and purification of glutamine synthetase cloned from Bacteroides fragilis. 1986

J A Southern, and J R Parker, and D R Woods

A glutamine synthetase (GS) gene, glnA, from Bacteroides fragilis was cloned on a recombinant plasmid pJS139 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. DNA homology was not detected between the B. fragilis glnA gene and the E. coli glnA gene. The cloned B fragilis glnA gene was expressed from its own promoter and was subject to nitrogen repression in E. coli, but it was not able to activate histidase activity in an E. coli glnA ntrB ntrC deletion mutant containing the Klebsiella aerogenes hut operon. The GS produced by pJS139 in E. coli was purified; it had an apparent subunit Mr of approximately 75,000, which is larger than that of any other known bacterial GS. There was very slight antigenic cross-reactivity between antibodies to the purified cloned B. fragilis GS and the GS subunit of wild-type E. coli.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005974 Glutamate-Ammonia Ligase An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2. Glutamine Synthetase,Glutamate Ammonia Ligase (ADP),Glutamate Ammonia Ligase,Ligase, Glutamate-Ammonia,Synthetase, Glutamine
D006638 Histidine Ammonia-Lyase An enzyme that catalyzes the first step of histidine catabolism, forming UROCANIC ACID and AMMONIA from HISTIDINE. Deficiency of this enzyme is associated with elevated levels of serum histidine and is called histidinemia (AMINO ACID METABOLISM, INBORN ERRORS). Histidase,Histidinase,Histidine Deaminase,Histidine alpha-Deaminase,Ammonia-Lyase, Histidine,Deaminase, Histidine,Histidine Ammonia Lyase,Histidine alpha Deaminase,alpha-Deaminase, Histidine
D001441 Bacteroides fragilis Gram-negative bacteria occurring in the lower intestinal tracts of man and other animals. It is the most common species of anaerobic bacteria isolated from human soft tissue infections.
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

J A Southern, and J R Parker, and D R Woods
December 2010, Protein expression and purification,
J A Southern, and J R Parker, and D R Woods
December 1989, Journal of general microbiology,
J A Southern, and J R Parker, and D R Woods
March 2011, Acta crystallographica. Section F, Structural biology and crystallization communications,
J A Southern, and J R Parker, and D R Woods
May 1998, Molecular & general genetics : MGG,
J A Southern, and J R Parker, and D R Woods
July 1980, Applied and environmental microbiology,
J A Southern, and J R Parker, and D R Woods
November 1976, Biochimica et biophysica acta,
J A Southern, and J R Parker, and D R Woods
September 1986, Applied and environmental microbiology,
J A Southern, and J R Parker, and D R Woods
April 1992, Infection and immunity,
J A Southern, and J R Parker, and D R Woods
March 1978, Antimicrobial agents and chemotherapy,
J A Southern, and J R Parker, and D R Woods
September 1983, Journal of bacteriology,
Copied contents to your clipboard!