Cerebral GABA-ergic and glutamatergic function in hepatic encephalopathy. 1987

R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron

Measurement of amino acids in brain tissue obtained at autopsy from cirrhotic patients dying in hepatic coma revealed a threefold increase in glutamine and a concomitant decrease in brain glutamate. The GABA levels were found to be unaltered. Studies using an animal model of portal-systemic encephalopathy gave similar results. Glutamic acid decarboxylase (GAD) activities were within normal limits, both in the brains of cirrhotic patients and portocaval-shunted rats. A previous study reported normal [3H]GABA binding to synaptic membrane preparations from cerebral cortex in these animals. Taken together, these findings suggest that cerebral GABA function is not impaired in hepatic encephalopathy associated with chronic liver disease and portal-systemic shunting. On the other hand, there is evidence to suggest that the releasable pool of glutamate may be depleted in brain in hepatic encephalopathy. Data consistent with this hypothesis include: Reduction in the evoked release of endogenous glutamate by superfusion of hippocampal slices with pathophysiological levels of ammonia; ammonia-induced reduction of glutamatergic neurotransmission; and an increase in the number of [3H]glutamate binding sites in synaptic membrane preparations from hyperammonemia rats and from rats with portocaval shunts. Such neurochemical changes may be of pathophysiological significance in hepatic encephalopathy.

UI MeSH Term Description Entries
D008297 Male Males
D011167 Portacaval Shunt, Surgical Surgical portasystemic shunt between the portal vein and inferior vena cava. Eck Fistula,Portacaval Anastomosis,Portacaval Shunt,Shunt, Surgical Portacaval,Surgical Portacaval Shunt,Anastomoses, Portacaval,Anastomosis, Portacaval,Fistula, Eck,Portacaval Anastomoses,Portacaval Shunts,Portacaval Shunts, Surgical,Shunt, Portacaval,Shunts, Portacaval,Shunts, Surgical Portacaval,Surgical Portacaval Shunts
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006501 Hepatic Encephalopathy A syndrome characterized by central nervous system dysfunction in association with LIVER FAILURE, including portal-systemic shunts. Clinical features include lethargy and CONFUSION (frequently progressing to COMA); ASTERIXIS; NYSTAGMUS, PATHOLOGIC; brisk oculovestibular reflexes; decorticate and decerebrate posturing; MUSCLE SPASTICITY; and bilateral extensor plantar reflexes (see REFLEX, BABINSKI). ELECTROENCEPHALOGRAPHY may demonstrate triphasic waves. (From Adams et al., Principles of Neurology, 6th ed, pp1117-20; Plum & Posner, Diagnosis of Stupor and Coma, 3rd ed, p222-5) Encephalopathy, Hepatic,Portosystemic Encephalopathy,Encephalopathy, Hepatocerebral,Encephalopathy, Portal-Systemic,Encephalopathy, Portosystemic,Fulminant Hepatic Failure with Cerebral Edema,Hepatic Coma,Hepatic Stupor,Hepatocerebral Encephalopathy,Portal-Systemic Encephalopathy,Coma, Hepatic,Comas, Hepatic,Encephalopathies, Hepatic,Encephalopathies, Hepatocerebral,Encephalopathies, Portal-Systemic,Encephalopathies, Portosystemic,Encephalopathy, Portal Systemic,Hepatic Comas,Hepatic Encephalopathies,Hepatic Stupors,Hepatocerebral Encephalopathies,Portal Systemic Encephalopathy,Portal-Systemic Encephalopathies,Portosystemic Encephalopathies,Stupor, Hepatic,Stupors, Hepatic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
June 2019, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
January 1990, Advances in experimental medicine and biology,
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
January 2003, Wiadomosci lekarskie (Warsaw, Poland : 1960),
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
January 1987, Hepatology (Baltimore, Md.),
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
June 1997, Hepatology (Baltimore, Md.),
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
January 1990, Advances in experimental medicine and biology,
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
January 1993, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
May 1982, Lancet (London, England),
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
April 1987, Biochemical Society transactions,
R F Butterworth, and J Lavoie, and J F Giguère, and G P Layrargues, and M Bergeron
April 1995, European journal of gastroenterology & hepatology,
Copied contents to your clipboard!