Isolation of a polymorphic genomic clone from chromosome 7. Physical and genetic linkage studies to markers around the cystic fibrosis locus. 1987

K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
Department of Biochemistry, St. Mary's Hospital Medical School, London, UK.

A peptide prepared from purified factor 13B (F13B) was sequenced, and a single, long oligonucleotide corresponding to its cognate DNA sequence was constructed and used to screen a chromosome 7 specific genomic library. The positive clone isolated, designated pKV13, was only related to F13B at the oligonucleotide region, but has proved to be a valuable chromosome 7 marker. pKV13 maps to 7pter-q22 in hybrid cell lines, and is present in a chromosome-mediated gene transfer (CMGT) cell line that also contains met and other 7q probes. pKV13 defines a common MspI restriction fragment length polymorphism (RFLP), and is genetically linked to two markers on the long arm of chromosome 7, B79a and COLIA2, both themselves linked to the cystic fibrosis locus. Multipoint linkage analysis demonstrates that KV13 maps centromeric to both B79a and COLIA2. pKV13 has been used to demonstrate the existence of rearrangements within CMGT hybrids, and will also prove valuable in multipoint linkage studies of other 7q markers. Finally, pKV13 provides a new polymorphic locus for the characterisation of 7q deletions in myeloid disorders such as myelodysplastic syndrome.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002897 Chromosomes, Human, Pair 7 A specific pair of GROUP C CHROMOSOMES of the human chromosome classification. Chromosome 7
D003550 Cystic Fibrosis An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION. Mucoviscidosis,Cystic Fibrosis of Pancreas,Fibrocystic Disease of Pancreas,Pancreatic Cystic Fibrosis,Pulmonary Cystic Fibrosis,Cystic Fibrosis, Pancreatic,Cystic Fibrosis, Pulmonary,Fibrosis, Cystic,Pancreas Fibrocystic Disease,Pancreas Fibrocystic Diseases
D005176 Factor XIII A fibrin-stabilizing plasma enzyme (TRANSGLUTAMINASES) that is activated by THROMBIN and CALCIUM to form FACTOR XIIIA. It is important for stabilizing the formation of the fibrin polymer (clot) which culminates the coagulation cascade. Coagulation Factor XIII,Factor XIII Transamidase,Fibrin Stabilizing Factor,Fibrinase,Laki-Lorand Factor,Blood Coagulation Factor XIII,Factor 13,Factor Thirteen,Laki Lorand Factor,Factor XIII, Coagulation,Stabilizing Factor, Fibrin,Transamidase, Factor XIII,XIII, Coagulation Factor
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
January 1985, Human genetics,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
January 1986, Cytogenetics and cell genetics,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
December 1986, American journal of human genetics,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
September 1990, Diseases of the colon and rectum,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
January 1986, Cold Spring Harbor symposia on quantitative biology,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
March 1987, American journal of human genetics,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
January 1985, Nature,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
December 2005, Human biology,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
December 1990, American journal of human genetics,
K A Davies, and L Lorand, and M Waterfield, and B Wainwright, and M Farrall, and R Williamson
May 1989, American journal of human genetics,
Copied contents to your clipboard!