Ribosomal DNA of fly Sciara coprophila has a very small and homogeneous repeat unit. 1979

R Renkawitz, and S A Gerbi, and K H Glätzer

In this report we show by hybridization of restriction fragments and by Miller spreads that the unit repeat of the fly Sciara coprophila is only 8.4 kb which is the smallest known for a multicellular eukaryote. The 8.4 kb EcoR1 fragment containing a complete unit of Sciara rDNA was cloned in pBR322, and mapped by the method of Parker (1977) and also by double digestions. The coding regions for 28S, 18S, and 5.8S RNA were localized by the method of Berk and Sharp (1977). From these data we conclude that the nontranscribed spacer, external transcribed spacer, and internal transcribed spacer are all shorter than in other organisms, thereby giving rise to the shorter overall rDNA repeat unit of Sciara. At least 90% of the Sciara rDNA repeats are homogeneous, with a length of 8.4 kb, but a 700 bp ladder of minor bands can also be found in digestions of total genome DNA. This profile of major and minor bands is identical between the X and X' chromosomes, as seen by a comparison of several genotypes. There are only 45 rRNA genes per X chromosome of Sciara (Gerbi and Crouse, 1976). These can easily be counted by low magnification Miller spreads which show that virtually all gene copies are actively being transcribed in the stage of spermatogenesis examined. This is the first demonstration for any reiterated gene family where all copies are shown to be simultaneously active.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004175 Diptera An order of the class Insecta. Wings, when present, number two and distinguish Diptera from other so-called flies, while the halteres, or reduced hindwings, separate Diptera from other insects with one pair of wings. The order includes the families Calliphoridae, Oestridae, Phoridae, SARCOPHAGIDAE, Scatophagidae, Sciaridae, SIMULIIDAE, Tabanidae, Therevidae, Trypetidae, CERATOPOGONIDAE; CHIRONOMIDAE; CULICIDAE; DROSOPHILIDAE; GLOSSINIDAE; MUSCIDAE; TEPHRITIDAE; and PSYCHODIDAE. The larval form of Diptera species are called maggots (see LARVA). Flies, True,Flies,Dipteras,Fly,Fly, True,True Flies,True Fly
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R Renkawitz, and S A Gerbi, and K H Glätzer
November 1989, Journal of molecular biology,
R Renkawitz, and S A Gerbi, and K H Glätzer
August 1980, Nucleic acids research,
R Renkawitz, and S A Gerbi, and K H Glätzer
June 1971, Journal of molecular biology,
R Renkawitz, and S A Gerbi, and K H Glätzer
May 1976, Genetics,
R Renkawitz, and S A Gerbi, and K H Glätzer
January 1993, Cold Spring Harbor symposia on quantitative biology,
R Renkawitz, and S A Gerbi, and K H Glätzer
November 1968, Chromosoma,
R Renkawitz, and S A Gerbi, and K H Glätzer
November 1993, Developmental biology,
R Renkawitz, and S A Gerbi, and K H Glätzer
September 1966, The Journal of cell biology,
R Renkawitz, and S A Gerbi, and K H Glätzer
December 1989, Journal of molecular biology,
Copied contents to your clipboard!