Tetradecanoyl phorbol acetate suppresses follicle-stimulating hormone-induced synthesis of the cholesterol side-chain cleavage enzyme complex in rat ovarian granulosa cells. 1987

W H Trzeciak, and T Duda, and M R Waterman, and E R Simpson
Department of Biochemistry, University of Texas Southwestern Medical School, Dallas 75235.

The effect of tetradecanoylphorbol acetate (TPA) on follicle-stimulating hormone (FSH)-induced synthesis of the cholesterol side-chain cleavage (SCC) enzyme complex was studied in rat ovarian granulosa cells cultured for 48 h in serum-free medium. Cell proteins were radiolabeled with [35S]methionine, followed by immunoprecipitation of cholesterol side-chain cleavage cytochrome P-450 (P-450SCC) as well as the iron-sulfur protein adrenodoxin. Polyacrylamide gel electrophoresis and fluorography of the immunoprecipitates showed that TPA, when added in combination with FSH (50 ng/ml) or dibutyryl cAMP (Bt2cAMP; 1 mM), suppressed the stimulatory effects of these compounds on the synthesis of the SCC components in a concentration-dependent fashion. The effect of TPA was accompanied by decreased progesterone formation and decreased cAMP accumulation. The structural analog of TPA, phorbol-4 alpha-didecanoate, which does not activate protein kinase C (Ca2+/phospholipid-dependent enzyme), had no effect on the FSH- or Bt2cAMP-stimulated synthesis of SCC and progesterone or on cAMP formation. In addition to inhibiting the synthesis of these proteins, TPA greatly reduced the FSH- and Bt2cAMP-induced increase in levels of mRNA encoding the precursor form of P-450SCC. It is concluded that the effect of the phorbol ester TPA to inhibit FSH-stimulated progesterone formation in cultured ovarian granulosa cells of the rat involves decreased synthesis of the components of the SCC enzyme complex due to reduced levels of mRNA encoding the precursor forms of these proteins. The results are indicative that TPA not only inhibits FSH-mediated stimulation of cAMP formation but also may block cAMP-mediated induction of SCC synthesis. It is postulated that the effects of TPA may reflect the physiological role of protein kinase C in the regulation of ovarian steroidogenesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002786 Cholesterol Side-Chain Cleavage Enzyme A mitochondrial cytochrome P450 enzyme that catalyzes the side-chain cleavage of C27 cholesterol to C21 pregnenolone in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP11A1 gene, catalyzes the breakage between C20 and C22 which is the initial and rate-limiting step in the biosynthesis of various gonadal and adrenal steroid hormones. CYP11A1,Cholesterol Desmolase,Cholesterol Monooxygenase (Side-Chain-Cleaving),Cytochrome P-450 CYP11A1,Cytochrome P-450(scc),20,22-Desmolase,CYP 11A1,Cytochrome P450 11A1,Cytochrome P450scc,20,22 Desmolase,Cholesterol Side Chain Cleavage Enzyme,Cytochrome P 450 CYP11A1
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W H Trzeciak, and T Duda, and M R Waterman, and E R Simpson
October 1986, Proceedings of the National Academy of Sciences of the United States of America,
W H Trzeciak, and T Duda, and M R Waterman, and E R Simpson
July 1989, Journal of reproductive immunology,
W H Trzeciak, and T Duda, and M R Waterman, and E R Simpson
January 1993, Endocrinology,
W H Trzeciak, and T Duda, and M R Waterman, and E R Simpson
May 1986, Journal of reproduction and fertility,
W H Trzeciak, and T Duda, and M R Waterman, and E R Simpson
April 1986, Endocrinology,
W H Trzeciak, and T Duda, and M R Waterman, and E R Simpson
April 2023, The Journal of endocrinology,
W H Trzeciak, and T Duda, and M R Waterman, and E R Simpson
November 1981, Endocrinology,
Copied contents to your clipboard!