Localization of D-amino acid oxidase in Bergmann glial cells and astrocytes of rat cerebellum. 1987

K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
Department of Biochemistry, Shiga University of Medical Science, Japan.

The localization of D-amino acid oxidase in rat cerebellum was systematically studied in serial fixed sections at the levels of both light and electron microscopy using a coupled peroxidation method based on the intensifying effect of nickel ions. Deposits were only seen in astrocytes and Bergmann glial cells, and not in neuronal components, endothelial cells or ependymal cells. In the molecular layer, heavy deposits were present in the profiles of Bergmann glial processes around the complexes of synapses where the parallel fiber varicosities form synapses with the thorns emerging from the spiny branchlets of Purkinje cell dendrites. In the Purkinje cell layer, the oxidase-containing processes of Bergmann glial cells enveloped basket cell axons, their terminals, the terminals of the recurrent collaterals of Purkinje cell axons and Purkinje cell bodies. In the granular layer, the cerebellar glomeruli were enveloped by the heavily stained processes of astrocytes. Based on this characteristic localization of the oxidase, we discussed the physiological role of the oxidase in connection with the function of glial cells.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003605 D-Amino-Acid Oxidase dextro-Amino Acid Oxidase,D-Amino Acid Dehydrogenase,Acid Dehydrogenase, D-Amino,Acid Oxidase, dextro-Amino,D Amino Acid Dehydrogenase,D Amino Acid Oxidase,Dehydrogenase, D-Amino Acid,Oxidase, D-Amino-Acid,Oxidase, dextro-Amino Acid,dextro Amino Acid Oxidase
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
May 2023, International journal of molecular sciences,
K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
October 1977, Journal of neurochemistry,
K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
January 1992, Glia,
K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
January 1983, Anatomy and embryology,
K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
March 1999, Journal of neurocytology,
K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
February 2003, Journal of neurophysiology,
K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
March 1987, The Histochemical journal,
K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
January 1983, Anatomy and embryology,
K Horiike, and H Tojo, and R Arai, and T Yamano, and M Nozaki, and T Maeda
January 1998, Biochimica et biophysica acta,
Copied contents to your clipboard!