Effects of anti-epileptic drugs on spreading depolarization-induced epileptiform activity in mouse hippocampal slices. 2017

Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.

Epilepsy and spreading depolarization (SD) are both episodic brain disorders and often exist together in the same individual. In CA1 pyramidal neurons of mouse hippocampal slices, induction of SD evoked epileptiform activities, including the ictal-like bursts, which occurred during the repolarizing phase of SD, and the subsequent generation of paroxysmal depolarization shifts (PDSs), which are characterized by mild depolarization plateau with overriding spikes. The duration of the ictal-like activity was correlated with both the recovery time and the depolarization potential of SD, whereas the parameters of PDSs were not significantly correlated with the parameters of SD. Moreover, we systematically evaluated the effects of multiple anti-epileptic drugs (AEDs) on SD-induced epileptiform activity. Among the drugs that are known to inhibit voltage-gated sodium channels, carbamazepine, phenytoin, valproate, lamotrigine, and zonisamide reduced the frequency of PDSs and the overriding firing bursts in 20-25 min after the induction of SD. The GABA uptake inhibitor tiagabine exhibited moderate effects and partially limited the incidence of PDSs after SD. AEDs including gabapentin, levetiracetam, ethosuximide, felbamate, and vigabatrin, had no significant effect on SD-induced epileptic activity. Taken together, these results demonstrate the effects of AEDs on SD and the related epileptiform activity at the cellular level.

UI MeSH Term Description Entries
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron

Related Publications

Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
June 2011, Journal of biological physics,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
March 1987, Journal of neurophysiology,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
April 1990, Neuroscience letters,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
November 2004, The European journal of neuroscience,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
January 1992, Epilepsy research. Supplement,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
July 1989, Brain research,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
March 1990, Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences = Huaxi yike daxue xuebao,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
April 1999, British journal of pharmacology,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
January 2001, Neuropharmacology,
Ching-Huei Lin, and Shih-Pin Hsu, and Ting-Chun Cheng, and Chin-Wei Huang, and Yao-Chang Chiang, and I-Han Hsiao, and Ming-Hsueh Lee, and Mei-Lin Shen, and Dong Chuan Wu, and Ning Zhou
October 1999, Journal of neurophysiology,
Copied contents to your clipboard!