Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. 1988

R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
Neurogenetics Laboratory, Massachusetts General Hospital, Boston 02115.

Amyloid B-protein/amyloid A4 is a peptide present in the neuritic plaques, neurofibrillary tangles and cerebrovascular deposits in patients with Alzheimer's disease and Down's syndrome (trisomy 21) and may be involved in the pathogenesis of Alzheimer's disease. Recent molecular genetic studies have indicated that amyloid protein is encoded as part of a larger protein by a gene on human chromosome 21 (refs 6-9). The amyloid protein precursor (APP) gene is expressed in brain and in several peripheral tissues, but the specific biochemical events leading to deposition of amyloid are not known. We have now screened complementary DNA libraries constructed from peripheral tissues to determine whether the messenger RNA encoding APP in these tissues is identical to that expressed in brain, and we identify a second APP mRNA that encodes an additional internal domain with a sequence characteristic of a Kunitz-type serine protease inhibitor. The alternative APP mRNA is present in both brain and peripheral tissues of normal individuals and those with Alzheimer's disease, but its pattern of expression differs from that of the previously reported APP mRNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011498 Protein Precursors Precursors, Protein
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004314 Down Syndrome A chromosome disorder associated either with an extra CHROMOSOME 21 or an effective TRISOMY for chromosome 21. Clinical manifestations include HYPOTONIA, short stature, BRACHYCEPHALY, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, single transverse palmar crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213) Mongolism,Trisomy 21,47,XX,+21,47,XY,+21,Down Syndrome, Partial Trisomy 21,Down's Syndrome,Partial Trisomy 21 Down Syndrome,Trisomy 21, Meiotic Nondisjunction,Trisomy 21, Mitotic Nondisjunction,Trisomy G,Downs Syndrome,Syndrome, Down,Syndrome, Down's
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
March 1990, Biochemical and biophysical research communications,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
January 1992, Journal of neuropathology and experimental neurology,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
October 1990, Biochemistry,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
December 1989, Journal of molecular graphics,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
March 2004, Brain research. Molecular brain research,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
January 1991, Proteins,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
December 1992, Experimental neurology,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
January 2010, Bioorganicheskaia khimiia,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
February 1988, Nature,
R E Tanzi, and A I McClatchey, and E D Lamperti, and L Villa-Komaroff, and J F Gusella, and R L Neve
January 1990, Journal of molecular neuroscience : MN,
Copied contents to your clipboard!