Substrate delivery mechanism and the role of membrane curvature in factor X activation by extrinsic tenase. 2017

Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia. Electronic address: after-ten@yandex.ru.

Membrane-bound enzyme complex of extrinsic tenase (VIIa/TF) is believed to be the primary activator of blood clotting in vivo. This complex (where factor VIIa (FVIIa) is a catalytically active part and tissue factor (TF) is its essential cofactor) activates its primary substrate factor X (FX) leading to factor Xa (FXa) ('a' stands for 'activated'). Both FX and FXa are able to bind to phospholipid membrane and, therefore, are distributed between solution and membrane surface. As a result, two possible mechanisms of substrate delivery to the extrinsic tenase exist: via lateral diffusion on the membrane surface or directly from the solution. Determination of the predominant pathway of substrate delivery is an important key to understanding the precise reaction mechanism. Here we construct a mechanism-driven computational model of FX activation by extrinsic tenase on the surface of phospholipid vesicles of different size. We show that experimentally observed dependence of the tenase activity on the phospholipid concentration could be obtained only if the substrate (FX) is membrane-bound. For correct experimental data description it is also necessary to take into account the dependence of FX/FXa membrane binding parameters (equilibrium dissociation constant and the number of phospholipid molecules per bound FX/FXa) on the membrane curvature. The model predicts that small vesicles promote activation of FX by the extrinsic tenase significantly better than large vesicles (with the same overall phospholipid, factors VIIa, X and TF concentrations in the solution).

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D005170 Factor X Storage-stable glycoprotein blood coagulation factor that can be activated to factor Xa by both the intrinsic and extrinsic pathways. A deficiency of factor X, sometimes called Stuart-Prower factor deficiency, may lead to a systemic coagulation disorder. Autoprothrombin III,Coagulation Factor X,Stuart Factor,Stuart-Prower Factor,Blood Coagulation Factor X,Factor 10,Factor Ten,Stuart Prower Factor,Factor X, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015951 Factor Xa Activated form of factor X that participates in both the intrinsic and extrinsic pathways of blood coagulation. It catalyzes the conversion of prothrombin to thrombin in conjunction with other cofactors. Autoprothrombin C,Coagulation Factor Xa,Factor X, Activated,Thrombokinase,Activated Factor X,Blood Coagulation Factor X, Activated,Factor 10A,Factor Ten A,Factor Xa, Coagulation

Related Publications

Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
August 2016, Scientific reports,
Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
December 1974, Biochemistry,
Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
June 2022, FEBS letters,
Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
July 1996, The Journal of biological chemistry,
Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
August 1994, Journal of biochemistry,
Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
February 1975, FEBS letters,
Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
December 1992, The Journal of biological chemistry,
Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
December 1995, Toxicon : official journal of the International Society on Toxinology,
Tatiana A Kovalenko, and Mikhail A Panteleev, and Anastasia N Sveshnikova
July 1988, British journal of haematology,
Copied contents to your clipboard!