Dynorphin A-(1-13) attenuates withdrawal in morphine-dependent rats: effect of route of administration. 1988

P G Green, and N M Lee
Department of Pharmacology, University of California, San Francisco 94143.

Rats were made tolerant to morphine by subcutaneous implantation of morphine alkaloid pellets. Three days after pellet implantation, withdrawal was induced by pellet removal and was assessed 6 h later. Immediately prior to withdrawal assessment, rats were injected with dynorphin A-(1-13) either i.th. (via a catheter), i.c.v. (via a cannula) or i.v. (via the tail vein). When administered i.th. in the dose range 1.25-5 nmol/rat, dynorphin A-(1-13) attenuated withdrawal over the 40 min observation period. Similarly, dynorphin A-(1-13) administered i.v. (37.5-150 nmol/kg) attenuated withdrawal, though only over the first 20 min following administration. Dynorphin A-(1-13) up to 10 nmol/rat had no effect on withdrawal scores. These data indicate that dynorphin acts at spinal sites to suppress withdrawal in morphine-dependent rats and may play a role in tolerance and dependence mechanisms.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002408 Catheters, Indwelling Catheters designed to be left within an organ or passage for an extended period of time. Implantable Catheters,In-Dwelling Catheters,Catheter, In-Dwelling,Catheter, Indwelling,Catheters, In-Dwelling,In Dwelling Catheters,In-Dwelling Catheter,Indwelling Catheter,Indwelling Catheters
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)

Related Publications

P G Green, and N M Lee
September 1982, European journal of pharmacology,
P G Green, and N M Lee
October 1993, Brain research,
P G Green, and N M Lee
May 2008, Progress in neuro-psychopharmacology & biological psychiatry,
P G Green, and N M Lee
June 1998, Psychopharmacology,
P G Green, and N M Lee
January 1986, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!