Comparison of the pharmacological characteristics of [3H]raclopride and [3H]SCH 23390 binding to dopamine receptors in vivo in mouse brain. 1988

P H Andersen
Department of Biochemical Pharmacology, NOVO Industri A/S, Pharmaceuticals R and D, Bagsvaerd, Denmark.

In vivo binding of the benzamide derivative [3H]raclopride was studied in mouse brain. The binding was saturable, reversible and stereospecific. Non-specific binding was 5-15% of the total binding. Pharmacological characterization of the binding indicated labelling of dopamine D2 receptors since the binding was potently inhibited by compounds with high affinity for this receptor in vitro. On the other hand, compounds with low affinity in vitro i.e., dopamine D1-selective compounds were weak or inactive as inhibitors of [3H]raclopride binding. A comparison of the pharmacological characteristics of [3H]raclopride and [3H]SCH 23390 binding in vivo indicated that compounds with selectivity in vitro retained this selectivity in vivo. Thus, spiroperidol, haloperidol, 1-sulpiride, clebopride, LY 171555 and (-)-NPA ((-)-N-propyl-norapomorphine) were D2 selective while SCH 23390, SKF 38393 and SKF 75670 were D1 selective. Clozapine, tilozepine, cis-flupentixol, chlorpromazine and butaclamol were non-selective both in vitro and in vivo. However, a few compounds changed profile in vivo compared to in vitro. Thus, fluperlapine and fluphenazine had a dual D1-D2 receptor profile in vitro but were D1- or D2-selective in vivo, respectively. Pergolide and molindone which were D2-selective in vitro both had a dual D1-D2 receptor profile in vivo. In conclusion, [3H]raclopride, in vivo, selectively labels the dopamine D2 receptor. Comparison of the pharmacological characteristics of [3H]raclopride and [3H]SCH 23390 binding in vivo supported the that the dopamine D1 receptor is an important target for a variety of neuroleptics, especially of the clozapine type. This may indicate that blockade of the dopamine D1 receptor conveys antipsychotic action.

UI MeSH Term Description Entries
D008297 Male Males
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001552 Benzazepines Compounds with BENZENE fused to AZEPINES.
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012457 Salicylamides Amides of salicylic acid.
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

P H Andersen
January 1989, Journal of receptor research,
P H Andersen
June 1987, European journal of pharmacology,
P H Andersen
February 1985, European journal of pharmacology,
P H Andersen
December 1985, European journal of pharmacology,
Copied contents to your clipboard!