Regulation of fatty acid degradation in Escherichia coli: fadR superrepressor mutants are unable to utilize fatty acids as the sole carbon source. 1988

K T Hughes, and R W Simons, and W D Nunn
Department of Molecular Biology and Biochemistry, University of California, Irvine 92717.

Localized mutagenesis of the fadR region of the Escherichia coli chromosome resulted in the isolation of two classes of fadR regulatory mutants. The first class was constitutive for the fatty acid degradative enzymes and presumably defective for fadR function. The second class was rarer and resulted in the inability to utilize fatty acids as a sole carbon source (Fad-). These fadR superrepressor mutants [fadR(S)] had greatly reduced levels of the beta-oxidative enzymes required for growth on fatty acids. The fadR(S) mutants reverted to Fad+ at a high frequency (10(-5], and the resulting Fad+ revertants were constitutive for expression of the fad enzymes (fadR). Merodiploid analysis showed the fadR(S) allele to be dominant to both fadR+ and fadR alleles.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D000101 Acetyl-CoA C-Acetyltransferase An enzyme that catalyzes the formation of acetoacetyl-CoA from two molecules of ACETYL COA. Some enzymes called thiolase or thiolase-I have referred to this activity or to the activity of ACETYL-COA C-ACYLTRANSFERASE. Acetoacetyl CoA Thiolase,Acetyl Coenzyme A Acetyltransferase,Acetyl-CoA Acetyltransferase,Acetyl CoA Acetyltransferase,Acetyl CoA C Acetyltransferase,Acetyltransferase, Acetyl-CoA,C-Acetyltransferase, Acetyl-CoA,CoA Thiolase, Acetoacetyl,Thiolase, Acetoacetyl CoA

Related Publications

K T Hughes, and R W Simons, and W D Nunn
May 2023, Advanced science (Weinheim, Baden-Wurttemberg, Germany),
K T Hughes, and R W Simons, and W D Nunn
February 2024, Small methods,
K T Hughes, and R W Simons, and W D Nunn
February 1972, Journal of bacteriology,
K T Hughes, and R W Simons, and W D Nunn
September 2023, Microbial cell factories,
K T Hughes, and R W Simons, and W D Nunn
May 1983, Journal of bacteriology,
K T Hughes, and R W Simons, and W D Nunn
February 1975, Biochimica et biophysica acta,
K T Hughes, and R W Simons, and W D Nunn
December 1968, Japanese journal of microbiology,
Copied contents to your clipboard!