Balance among autonomic controls of heart rate in neonatal spontaneously hypertensive and borderline hypertensive rats. 1988

D C Tucker, and J V Domino
Department of Psychology, University of Alabama, Birmingham 35294.

The ontogeny of functional sympathetic neural, adrenal medullary, and extra-adrenal components of adrenergic control of heart rate was compared in neonatal Spontaneously hypertensive (SHR), Wistar-Kyoto (WKY) and Borderline hypertensive (BHR) rats using combined sequential pharmacological blockade and surgical intervention. Baseline heart rate recorded from awake and unrestrained pups was lower in BHR than in WKY or SHR at 5 days of age. Tonic sympathetic neural control of heart rate was inferred from bradycardia after treatment with the adrenergic neuron-blocking agent, bretylium tosylate. Bradycardia after bretylium treatment was observed at 2, 5 and 8 days of age in all strains, suggesting tonic sympathetic neural control of heart rate during the first postnatal week. Parasympathetic control of heart rate was inferred from heart rate increase after treatment with the muscarinic receptor blocker, atropine methyl nitrate, in pups pretreated with bretylium. Tachycardia following atropine methyl nitrate was substantial in all 24-day-old pups. Control of heart rate by neurally mediated release of catecholamines from the adrenal medulla was inferred from bradycardia following administration of the ganglionic blocking agent, hexamethonium, to pups pretreated with bretylium and atropine methyl nitrate. Heart rate decreases after hexamethonium were found in 2-day-old WKY and BHR pups, and at 5 and 8 days in all strains. Adrenalectomy was performed in additional animals to confirm the adrenal catecholamine influence on heart rate. The influence of residual circulating catecholamines on neonatal heart rate was inferred from bradycardia following administration of the beta-adrenergic receptor blocking agent, atenolol, in pups pretreated with bretylium, methylatropine, and hexamethonium. Bradycardia was observed in pups of each strain and at all ages after atenolol treatment. Strain differences in autonomic controls of heart rate were most pronounced at 24 days of age. At 24 days of age both SHR and BHR pups showed increased adrenal catecholamine and parasympathetic influences on heart rate compared to WKY. Thus, prior to weaning, rats differing in their genetic predisposition to hypertension showed a unique pattern of autonomic control over heart rate which may be related to adult cardiovascular regulation.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D001950 Bretylium Tosylate An agent that blocks the release of adrenergic transmitters and may have other actions. It was formerly used as an antihypertensive agent, but is now proposed as an anti-arrhythmic. Bretylate,Bretylium Tosilate,Bretylol,Ornid
D005260 Female Females
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse

Related Publications

D C Tucker, and J V Domino
December 1981, Journal of comparative and physiological psychology,
D C Tucker, and J V Domino
December 1988, Journal of cardiovascular pharmacology,
D C Tucker, and J V Domino
July 1993, Hypertension (Dallas, Tex. : 1979),
D C Tucker, and J V Domino
April 2020, Naunyn-Schmiedeberg's archives of pharmacology,
D C Tucker, and J V Domino
March 1998, The American journal of physiology,
D C Tucker, and J V Domino
April 1983, Pflugers Archiv : European journal of physiology,
D C Tucker, and J V Domino
June 1967, Saishin igaku. Modern medicine,
D C Tucker, and J V Domino
January 1984, Biology of the neonate,
Copied contents to your clipboard!