In vivo growth kinetics of P388 and L1210 leukemias. 1988

O P Clausen, and K G Bolstad, and E Mjelva
Department of Pathology Rikshospitalet, Oslo, Norway.

The P388 lymphocytic leukemia and the L1210 lymphoid leukemia are used as test systems for putative cytotoxic drugs. These leukemias are also used to investigate the perturbation of cell cycle progression of various chemical compounds in more detail. There is little information on the normal growth kinetics in vivo of these leukemias. In the present report we therefore present the results from growth kinetic studies of P388 and L1210 leukemic cells growing in ascites form in mice. We used 3H-TdR autoradiography, DNA flow cytometry and the stathmokinetic method. During exponential growth both leukemias showed a growth fraction of unity. Whereas no significant cell loss was observed during the early growth phase of P388 cells, cell loss was indicated by a discrepancy between potential and actual doubling times during exponential growth of L1210 cells. During the phase of growth retardation, the proportion of G1 and G2 cells increased at the expence of a reduced S phase fraction in the P388 leukemia, whereas only small changes in cell cycle distributions were seen with time after inoculation of L1210 cells. An increasing discrepancy in the reduction of the S phase fraction and the 3H-TdRLI was seen in the P388 cells with time after inoculation. Thus, a majority of P388 cells with S phase DNA content were unlabelled during the late phase of growth restriction, indicating resting cells in S phase. A good correlation was found between the 3H-TdR LI and S phase fraction throughout the life history of L1210 cells, revealing considerable differences in in vivo growth kinetics between the two leukemias. Such differences should be considered when evaluating test results.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007939 Leukemia L1210 An experimental LYMPHOCYTIC LEUKEMIA of mice. Leukemia L 1210,L 1210, Leukemia,L1210, Leukemia
D007941 Leukemia P388 An experimental lymphocytic leukemia originally induced in DBA/2 mice by painting with methylcholanthrene. P388D(1) Leukemia,P388, Leukemia
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006128 Growth Gradual increase in the number, the size, and the complexity of cells of an individual. Growth generally results in increase in ORGAN WEIGHT; BODY WEIGHT; and BODY HEIGHT.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

O P Clausen, and K G Bolstad, and E Mjelva
June 2002, European journal of haematology,
O P Clausen, and K G Bolstad, and E Mjelva
January 1978, Biochemical pharmacology,
O P Clausen, and K G Bolstad, and E Mjelva
July 1997, Die Pharmazie,
O P Clausen, and K G Bolstad, and E Mjelva
January 1982, Biochemical pharmacology,
O P Clausen, and K G Bolstad, and E Mjelva
January 1993, Acta haematologica Polonica,
O P Clausen, and K G Bolstad, and E Mjelva
August 2011, Cancer chemotherapy and pharmacology,
O P Clausen, and K G Bolstad, and E Mjelva
January 1982, Oncology,
Copied contents to your clipboard!