Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus). 1988

S R Vincent
Department of Psychiatry, University of British Columbia, Vancouver, Canada.

Antibodies to the catecholamine synthetic enzymes tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT) were used in an immunohistochemical analysis of the brain of the golden hamster. The distributions and morphological characteristics of neurons displaying immunoreactivity to these enzymes were examined in sets of adjacent sections. Various novel groups of TH-immunoreactive neurons were found. A distinct feature observed in the hamster brain was the presence of a population of magnocellular multipolar neurons in the basal forebrain which displayed intense TH immunoreactivity. These cells were found predominantly in the vertical and horizontal limbs of the nucleus of the diagonal band of Broca and in the lateral preoptic area. Many small TH-positive cells were also found scattered in the deeper layers of the cortex in the hamster. The pericentral divisions of the inferior colliculus contained a large number of TH-immunoreactive neurons, and a few small bipolar cells in the lateral superior olive were also stained. A major cell group was found in the lateral parabrachial nucleus at the level of the locus ceruleus that displayed TH but not DBH immunoreactivity and was obviously separate from the TH- and DBH-positive cells of the locus ceruleus. Additional TH-positive cell groups were found along the seventh nerve, within the medial longitudinal fasiculus, in the nucleus raphe pallidus, and in the pars caudalis of the spinal trigeminal nucleus. The various catecholamine cell groups described by many people in the rat by use of histochemical and immunohistochemical techniques were also present in the hamster brain. These included the noradrenergic, TH- and DBH-immunoreactive cell groups of the pons and medulla. The hamster also displayed groups of medullary neurons displaying immunoreactivity to TH, DBH, and PNMT. These appeared similar in distribution and morphology to the adrenaline cell groups described in the rat. TH-immunoreactive cell groups in the olfactory bulb, hypothalamus, substantia nigra, and ventral tegmental area of the hamster appeared to correspond to the dopaminergic cells groups described in the rat and other species. In addition, as in the rat and cat, numerous TH-positive cells were found in the dorsal motor nucleus of the vagus, the nucleus of the solitary tract, and the area postrema. These observations suggest that catechols may be present in neurons in the cortex, basal forebrain, auditory brainstem, and the parabrachial nucleus of the hamster. These studies also emphasize the need for caution in making generalizations regarding transmitter distributions across species.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004299 Dopamine beta-Hydroxylase Dopamine beta-Monooxygenase,Dopamine beta Hydroxylase,Dopamine beta Monooxygenase,beta-Hydroxylase, Dopamine,beta-Monooxygenase, Dopamine
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

Copied contents to your clipboard!