Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. 1987

D A McCormick, and D A Prince
Department of Neurology, Stanford University School of Medicine, CA 94305.

1. The post-natal development of the electrophysiological properties of cortical layer V pyramidal neurons was investigated with intracellular recordings from rat sensorimotor cortical slices, in vitro. 2. At all ages post-natally (post-natal day 1 to day 36; P1-P36) neurons were capable of generating a train of Na+-dependent action potentials in response to intracellular injection of sufficient depolarizing current. During the second and third week post-natally, these action potentials changed substantially, becoming faster in both their rising and falling phases, shorter in duration, and larger in amplitude. 3. Both mature (greater than P21) and immature (P2-P4) cortical neurones could generate Ca2+-dependent action potentials only if a substantial portion of K+ conductances were blocked. The maximum rate of rise of Ca2+ spikes also increased with age. 4. The apparent input resistance, specific membrane resistance, and membrane time constant all decreased with age from P1 to P30. Immature neurones had I-V relationships that were substantially more linear than those of adult cells, although rectification was often present in both the hyperpolarizing and depolarizing range. Inward rectification in the depolarizing range was Na+ dependent and was substantially larger in mature versus immature neurones. 5. Single, or trains of, action potentials in immature neurones were followed by short duration (10-50 ms) and long duration (1-5 s) after-hyperpolarizations (a.h.p.s) respectively. The duration of the latter appeared to decrease with age. The presence of large a.h.p.s indicates that Ca2+ entry occurs during the action potential of immature, as well as mature, neurones. 6. Responses to intracellular injection of depolarizing current pulses indicated that immature neurones have frequency versus injected current (f-I) relationships which are in general less steep than those for adult neurones and more limited in terms of the range of firing frequencies. 7. Our results are consistent with the hypothesis that there is a considerable increase in the density of voltage-dependent ionic channels underlying the electro-responsiveness of cortical pyramidal neurones during post-natal development.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium

Related Publications

D A McCormick, and D A Prince
June 1985, The Journal of physiology,
D A McCormick, and D A Prince
June 1969, Electroencephalography and clinical neurophysiology,
D A McCormick, and D A Prince
August 1994, British journal of pharmacology,
D A McCormick, and D A Prince
May 1969, Journal of anatomy,
D A McCormick, and D A Prince
June 1977, The Journal of physiology,
D A McCormick, and D A Prince
June 1988, Brain research,
D A McCormick, and D A Prince
January 1994, The Journal of comparative neurology,
Copied contents to your clipboard!