Autonomic nervous system pulmonary vasoregulation after hypoperfusion in conscious dogs. 1988

P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205.

We investigated the role of the autonomic nervous system (ANS) in the pulmonary vascular response to increasing cardiac index after a period of hypoperfusion (defined as reperfusion) in conscious dogs. Base-line and reperfusion pulmonary vascular pressure-cardiac index (P/Q) plots were generated by stepwise constriction and release, respectively, of an inferior vena caval occluder to vary Q. Surprisingly, after 10-15 min of hypoperfusion (Q decreased from 139 +/- 9 to 46 +/- 3 ml.min-1.kg-1), the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) was unchanged over a broad range of Q during reperfusion compared with base line when the ANS was intact. In contrast, pulmonary vasoconstriction was observed during reperfusion after combined sympathetic beta-adrenergic and cholinergic receptor block, after beta-block alone, but not after cholinergic block alone. The pulmonary vasoconstriction during reperfusion was entirely abolished by combined sympathetic alpha- and beta-block. Although sympathetic alpha-block alone caused pulmonary vasodilation compared with the intact, base-line P/Q relationship, no further vasodilation was observed during reperfusion. Thus the ANS actively regulates the pulmonary circulation during reperfusion in conscious dogs. With the ANS intact, sympathetic beta-adrenergic vasodilation offsets alpha-adrenergic vasoconstriction and prevents pulmonary vasoconstriction during reperfusion.

UI MeSH Term Description Entries
D008297 Male Males
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011669 Pulmonary Wedge Pressure The blood pressure as recorded after wedging a CATHETER in a small PULMONARY ARTERY; believed to reflect the PRESSURE in the pulmonary CAPILLARIES. Pulmonary Artery Wedge Pressure,Pulmonary Capillary Wedge Pressure,Pulmonary Venous Wedge Pressure,Wedge Pressure,Pressure, Pulmonary Wedge,Pressures, Pulmonary Wedge,Pulmonary Wedge Pressures,Wedge Pressure, Pulmonary,Wedge Pressures, Pulmonary,Pressure, Wedge,Pressures, Wedge,Wedge Pressures
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
February 1994, Journal of applied physiology (Bethesda, Md. : 1985),
P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
January 2000, Journal of applied physiology (Bethesda, Md. : 1985),
P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
September 1980, Cardiovascular research,
P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
January 1978, Pharmacology,
P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
January 1968, Pharmacology,
P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
January 2002, Annual review of neuroscience,
P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
September 1994, Anesthesiology,
P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
January 1989, Bulletin et memoires de l'Academie royale de medecine de Belgique,
P W Clougherty, and D P Nyhan, and B B Chen, and H M Goll, and P A Murray
September 1990, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!