Peroxisomes in intestinal and gallbladder epithelial cells of the stickleback, Gasterosteus aculeatus L. (Teleostei). 1988

A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
Department of Animal Physiology, Biological Centre, Haren, The Netherlands.

The occurrence of microbodies in the epithelial cells of the intestine and gallbladder of the stickleback, Gasterosteus aculeatus L., is described. In the intestine the organelles are predominantly located in the apical and perinuclear zone of the cells and may contain small crystalline cores. In gallbladder epithelial cells the microbodies are distributed randomly. The latter organelles are characterized by the presence of large crystalloids. Cytochemical and biochemical experiments show that catalase and D-amino acid oxidase are main matrix components of the microbodies in both the intestinal and gallbladder epithelia. These organelles therefore are considered peroxisomes. In addition, in intestinal mucosa but not in gallbladder epithelium a low activity of palmitoyl CoA oxidase was detected biochemically. Urate oxidase and L-alpha hydroxy acid oxidase activities could not be demonstrated.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D003605 D-Amino-Acid Oxidase dextro-Amino Acid Oxidase,D-Amino Acid Dehydrogenase,Acid Dehydrogenase, D-Amino,Acid Oxidase, dextro-Amino,D Amino Acid Dehydrogenase,D Amino Acid Oxidase,Dehydrogenase, D-Amino Acid,Oxidase, D-Amino-Acid,Oxidase, dextro-Amino Acid,dextro Amino Acid Oxidase
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005704 Gallbladder A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid. Gallbladders

Related Publications

A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
January 1988, Wiadomosci parazytologiczne,
A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
January 1983, Cell and tissue research,
A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
October 1967, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
September 1958, Journal of embryology and experimental morphology,
A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
December 1982, Oecologia,
A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
December 2011, Comparative biochemistry and physiology. Part D, Genomics & proteomics,
A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
January 1988, Comparative biochemistry and physiology. B, Comparative biochemistry,
A J de Ruiter, and M Veenhuis, and S E Wendelaar Bonga
January 1982, Cell and tissue research,
Copied contents to your clipboard!