Enzyme cytochemistry of rat organs after uremia with special reference to proteases. 1988

R Gossrau, and A Heidland, and J Haunschild
Department of Anatomy, Free University of Berlin, Germany.

Wistar rat organs and tissues were investigated after acute and chronic uremia using enzyme cytochemical means whereby special attention was paid to plasma membrane and lysosomal proteases. Heart muscle, pancreas, spleen, stomach, duodenum, jejunum, colon and skeletal muscle did not show any clear-cut indications of alterations. After acute uremia activities of dipeptidyl peptidase IV, glutamyl aminopeptidase and microsomal alanyl aminopeptidase were decreased in the extraorbital gland and that of dipeptidyl peptidase IV in the submandibular gland. The thymus showed an increased staining for glutamyl aminopeptidase and lysosomal proteases. An activity increase of dipeptidyl peptidase IV, acid phosphatase and beta-N-acetyl-D-glucosaminidase occurred in bronchial lavage cells among which the alveolar macrophages predominated. In addition, their number was comparatively higher. Non-specific esterase activity was lowered in these cells. Alkaline phosphatase activity was drastically enhanced at the biliary pole of hepatocytes. Following chronic uremia all effects were less pronounced except for the lavage cells which were positive for glutamyl aminopeptidase, microsomal alanyl aminopeptidase and gamma-glutamyl transpeptidase and showed increased staining for lysosomal proteases, glycosidases and nonspecific phosphatases.

UI MeSH Term Description Entries
D008297 Male Males
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004152 Dipeptidyl-Peptidases and Tripeptidyl-Peptidases A subclass of exopeptidases that includes enzymes which cleave either two or three AMINO ACIDS from the end of a peptide chain. Dipeptidyl Peptidase,Dipeptidyl Peptidases,Dipeptidylpeptide Hydrolase,Tripeptidyl-Peptidase,Dipeptidylpeptide Hydrolases,Tripeptidyl-Peptidases,Dipeptidyl Peptidases and Tripeptidyl Peptidases,Hydrolase, Dipeptidylpeptide,Peptidase, Dipeptidyl,Tripeptidyl Peptidase,Tripeptidyl Peptidases,Tripeptidyl-Peptidases and Dipeptidyl-Peptidases
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014511 Uremia A clinical syndrome associated with the retention of renal waste products or uremic toxins in the blood. It is usually the result of RENAL INSUFFICIENCY. Most uremic toxins are end products of protein or nitrogen CATABOLISM, such as UREA or CREATININE. Severe uremia can lead to multiple organ dysfunctions with a constellation of symptoms. Uremias
D043384 Glutamyl Aminopeptidase A ZINC-dependent membrane-bound aminopeptidase that catalyzes the N-terminal peptide cleavage of GLUTAMATE (and to a lesser extent ASPARTATE). The enzyme appears to play a role in the catabolic pathway of the RENIN-ANGIOTENSIN SYSTEM. Aminopeptidase A,Angiotensinase A,Aspartate Aminopeptidase,Aspartyl Aminopeptidase,Aminopeptidase, Aspartate,Aminopeptidase, Aspartyl,Aminopeptidase, Glutamyl

Related Publications

R Gossrau, and A Heidland, and J Haunschild
January 1988, Acta histochemica. Supplementband,
R Gossrau, and A Heidland, and J Haunschild
January 1985, Zeitschrift fur mikroskopisch-anatomische Forschung,
R Gossrau, and A Heidland, and J Haunschild
January 1982, The Histochemical journal,
R Gossrau, and A Heidland, and J Haunschild
September 1960, Archivio "de Vecchi" per l'anatomia patologica e la medicina clinica,
R Gossrau, and A Heidland, and J Haunschild
September 1968, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
R Gossrau, and A Heidland, and J Haunschild
December 1954, The Journal of urology,
R Gossrau, and A Heidland, and J Haunschild
January 1963, Arerugi = [Allergy],
R Gossrau, and A Heidland, and J Haunschild
January 1964, Acta chirurgica Academiae Scientiarum Hungaricae,
R Gossrau, and A Heidland, and J Haunschild
July 1978, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!