Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. 2018

Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center , New Orleans, Louisiana.

Burst firing in medial substantia nigra (mSN) dopamine (DA) neurons has been selectively linked to novelty-induced exploration behavior in mice. Burst firing in mSN DA neurons, in contrast to lateral SN DA neurons, requires functional ATP-sensitive potassium (K-ATP) channels both in vitro and in vivo. However, the precise role of K-ATP channels in promoting burst firing is unknown. We show experimentally that L-type calcium channel activity in mSN DA neurons enhances open probability of K-ATP channels. We then generate a mathematical model to study the role of Ca2+ dynamics driving K-ATP channel function in mSN DA neurons during bursting. In our model, Ca2+ influx leads to local accumulation of ADP due to Ca-ATPase activity, which in turn activates K-ATP channels. If K-ATP channel activation reaches levels sufficient to terminate spiking, rhythmic bursting occurs. The model explains the experimental observation that, in vitro, coapplication of NMDA and a selective K-ATP channel opener, NN414, is required to elicit bursting as follows. Simulated NMDA receptor activation increases the firing rate and the rate of Ca2+ influx, which increases the activation of K-ATP. The model suggests that additional sources of hyperpolarization, such as GABAergic synaptic input, are recruited in vivo for burst termination or rebound burst discharge. The model predicts that NN414 increases the sensitivity of the K-ATP channel to ADP, promoting burst firing in vitro, and that that high levels of Ca2+ buffering, as might be expected in the calbindin-positive SN DA neuron subpopulation, promote rhythmic bursting pattern, consistent with experimental observations in vivo. NEW & NOTEWORTHY Recently identified distinct subpopulations of midbrain dopamine neurons exhibit differences in their two primary activity patterns in vivo: tonic (single spike) firing and phasic bursting. This study elucidates the biophysical basis of bursts specific to dopamine neurons in the medial substantia nigra, enabled by ATP-sensitive K+ channels and necessary for novelty-induced exploration. A better understanding of how dopaminergic signaling differs between subpopulations may lead to therapeutic strategies selectively targeted to specific subpopulations.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D054086 KATP Channels Heteromultimers of Kir6 channels (the pore portion) and sulfonylurea receptor (the regulatory portion) which affect function of the HEART; PANCREATIC BETA CELLS; and KIDNEY COLLECTING DUCTS. KATP channel blockers include GLIBENCLAMIDE and mitiglinide whereas openers include CROMAKALIM and minoxidil sulfate. ATP-Sensitive Potassium Channel,ATP-Sensitive Potassium Channels,KATP Channel,ATP Sensitive Potassium Channel,ATP Sensitive Potassium Channels,Channel, ATP-Sensitive Potassium,Channel, KATP,Channels, ATP-Sensitive Potassium,Channels, KATP,Potassium Channel, ATP-Sensitive,Potassium Channels, ATP-Sensitive
D059290 Dopaminergic Neurons Neurons whose primary neurotransmitter is DOPAMINE. Dopamine Neurons,Dopamine Neuron,Dopaminergic Neuron,Neuron, Dopamine,Neuron, Dopaminergic,Neurons, Dopamine,Neurons, Dopaminergic
D020013 Calcium Signaling Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins. Calcium Oscillations,Calcium Waves,Calcium Puffs,Calcium Sparks,Calcium Spikes,Calcium Oscillation,Calcium Puff,Calcium Signalings,Calcium Spark,Calcium Spike,Calcium Wave,Oscillation, Calcium,Oscillations, Calcium,Puff, Calcium,Puffs, Calcium,Signaling, Calcium,Signalings, Calcium,Spark, Calcium,Sparks, Calcium,Spike, Calcium,Spikes, Calcium,Wave, Calcium,Waves, Calcium

Related Publications

Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
September 2012, Nature neuroscience,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
September 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
August 2016, Neuroscience,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
October 2006, The Journal of pharmacology and experimental therapeutics,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
March 2019, Brain research,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
August 2007, The Journal of pharmacology and experimental therapeutics,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
July 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
January 1994, Critical reviews in neurobiology,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
January 2009, Journal of neural transmission. Supplementum,
Christopher Knowlton, and Sylvie Kutterer, and Jochen Roeper, and Carmen C Canavier
July 1993, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!