Human T-cell leukemia virus type I infection of CD4+ or CD8+ cytotoxic T-cell clones results in immortalization with retention of antigen specificity. 1988

D V Faller, and M A Crimmins, and S J Mentzer
Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.

The human T-cell leukemia virus type I (HTLV-I) is capable of chronically infecting various types of T cells and nonlymphoid cells. The effects of chronic infection on the specific functional activities and growth requirements of mature cytotoxic T lymphocytes (CTL) have remained poorly defined. We have, therefore, investigated the results of HTLV-I infection of both CD4+ and CD8+ human CTL clones. HTLV-I infection resulted in the establishment of functional CTL lines which propagated indefinitely in culture many months longer than the uninfected parental clone. The infected cells became independent of the need for antigen (target cell) stimulation as a requirement for proliferation and growth. Like their uninfected counterparts, however, these HTLV-I-infected clones remained strictly dependent on conditioned medium from mitogen-stimulated T lymphocytes for their growth. This growth factor requirement was not fulfilled by recombinant interleukin-2 alone. Furthermore, the infected lines remained functionally identical to their uninfected parental CTL clones in their ability to specifically recognize and lyse the appropriate target cells. Our findings indicate that the major effects of HTLV-I infection on mature CTL consist of (i) the capacity for proliferation in the absence of antigen stimulation and (ii) a prolonged or immortal survival in vitro, but they also indicate that the fine specificity and cytolytic capacity of these cells remain unaffected.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006680 HLA Antigens Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases. Human Leukocyte Antigen,Human Leukocyte Antigens,Leukocyte Antigens,HL-A Antigens,Antigen, Human Leukocyte,Antigens, HL-A,Antigens, HLA,Antigens, Human Leukocyte,Antigens, Leukocyte,HL A Antigens,Leukocyte Antigen, Human,Leukocyte Antigens, Human
D006681 HLA-D Antigens Human immune-response or Class II antigens found mainly, but not exclusively, on B-lymphocytes and produced from genes of the HLA-D locus. They are extremely polymorphic families of glycopeptides, each consisting of two chains, alpha and beta. This group of antigens includes the -DR, -DQ and -DP designations, of which HLA-DR is most studied; some of these glycoproteins are associated with certain diseases, possibly of immune etiology. Antigens, HLA-D,Class II Human Antigens,HLA-Dw Antigens,Human Class II Antigens,Ia-Like Antigens, Human,Immune Response-Associated Antigens, Human,Immune-Associated Antigens, Human,Immune-Response Antigens, Human,HLA-D,HLA-Dw,Immune Response Associated Antigens, Human,Antigens, HLA D,Antigens, HLA-Dw,Antigens, Human Ia-Like,Antigens, Human Immune-Associated,Antigens, Human Immune-Response,HLA D Antigens,HLA Dw Antigens,Human Ia-Like Antigens,Human Immune-Associated Antigens,Human Immune-Response Antigens,Ia Like Antigens, Human,Immune Associated Antigens, Human,Immune Response Antigens, Human
D006800 Deltaretrovirus Infections Infections caused by the HTLV or BLV deltaretroviruses. They include human T-cell leukemia-lymphoma (LEUKEMIA-LYMPHOMA, T-CELL, ACUTE, HTLV-I-ASSOCIATED). BLV Infections,HTLV Infections,HTLV-BLV Infections,BLV Infection,Deltaretrovirus Infection,HTLV BLV Infections,HTLV Infection,HTLV-BLV Infection,Infection, Deltaretrovirus,Infections, Deltaretrovirus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

D V Faller, and M A Crimmins, and S J Mentzer
April 1989, Journal of immunology (Baltimore, Md. : 1950),
D V Faller, and M A Crimmins, and S J Mentzer
May 1986, The Journal of clinical investigation,
D V Faller, and M A Crimmins, and S J Mentzer
May 1994, Journal of virology,
D V Faller, and M A Crimmins, and S J Mentzer
October 1998, The Journal of general virology,
D V Faller, and M A Crimmins, and S J Mentzer
November 1998, AIDS research and human retroviruses,
D V Faller, and M A Crimmins, and S J Mentzer
August 1989, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!