Functional shift from muscarinic to nicotinic cholinergic receptors involved in inositol trisphosphate and cyclic GMP accumulation during the primary culture of adrenal chromaffin cells. 1988

T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.

Specificities of cholinergic receptors for the accumulation of inositol trisphosphates (InsP3) and cyclic GMP and mobilization of intracellular Ca2+ in relation to culture periods were investigated in primary cultures of bovine adrenal chromaffin cells. At 0.5 day in culture, muscarine, a specific agonist for muscarinic receptors, caused a greater effect on intracellular Ca2+ mobilization and the accumulation of Ins(1,3,4)P3 than did the nicotinic-specific agonist nicotine. On the contrary, at 5 days, nicotine produced a greater effect on the accumulation of Ins(1,3,4)P3 and intracellular calcium mobilization than did muscarine. Furthermore, at 0.5 day, the muscarinic antagonist atropine strongly inhibited the increase in InsP3 accumulation that was induced by the nonspecific agonist carbachol, whereas at 5 days the inhibitory effect of atropine was greatly lowered. On the other hand, the nicotinic receptor antagonists hexamethonium and d-tubocurarine showed a much higher inhibitory potency at 5 days compared with 0.5 day in culture. Cholinergic receptor subtypes involved in cyclic GMP accumulation showed functional shifts similar to those in InsP3 formation. Binding experiments with a muscarinic ligand excluded the possibility that the reduction in muscarinic effects on InsP3 and cyclic GMP formation and intracellular Ca2+ mobilization were due to disappearance of the muscarinic receptor itself. These data show that cholinergic receptors linked to the accumulation of InsP3 and cyclic GMP and Ca2+ mobilization functionally shift from muscarinic to nicotinic during primary culture of adrenal chromaffin cells.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002838 Chromaffin System The cells of the body which stain with chromium salts. They occur along the sympathetic nerves, in the adrenal gland, and in various other organs. Argentaffin System,Argentaffin Systems,Chromaffin Systems,System, Argentaffin,System, Chromaffin,Systems, Argentaffin,Systems, Chromaffin
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic

Related Publications

T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
November 1987, Journal of neurochemistry,
T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
January 1986, Journal de physiologie,
T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
January 1984, Nature,
T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
February 1986, Journal of neurochemistry,
T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
February 2008, Acta physiologica (Oxford, England),
T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
April 1981, Biochemical pharmacology,
T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
September 1980, L'union medicale du Canada,
T Nakaki, and N Sasakawa, and S Yamamoto, and R Kato
October 1998, Cell and tissue research,
Copied contents to your clipboard!