Effect of butylated hydroxyanisole on hepatic glucuronidation and biliary excretion of drugs in mice. 1988

Z Gregus, and C D Klaassen
Department of Pharmacology, University of Kansas Medical Center, Kansas City 66103.

Inhibition of glucuronidation by depletion of UDP-glucuronic acid from liver impairs the hepatobiliary transport of glucuronidated xenobiotics. However, it is not known if enhancement of hepatic glucuronidation increases the biliary excretion of these compounds. Therefore, the effect of treatment with butylated hydroxyanisole (BHA), which increases hepatic glucuronidation capacity, on the biliary excretion of compounds undergoing glucuronidation was studied in mice. BHA-feeding (1% for 10 days) increased hepatic UDP-glucuronic acid content by 240% and enhanced hepatic UDP-glucuronosyltransferase activities (expressed per kg body weight) toward valproic acid, phenolphthalein, iopanoic acid and bilirubin 220, 180, 120 and 60%, respectively. BHA treatment did not influence the biliary excretion of unmetabolized cholephils, phenol-3,6-dibromphthalein disulphonate and phenolphthalein glucuronide, but enhanced that of phenolphthalein (+108%), iopanoic acid (+63%) and bilirubin (+33%) as glucuronides. However, these increases were apparent only in the initial phase of excretion. In contrast, BHA markedly decreased (-43%) the biliary excretion of valproic acid glucuronides. Simultaneously, BHA increased the urinary excretion of the glucuronides of phenolphthalein (+48%), iopanoic acid (+450%) and valproic acid (+150%). A shift in the distribution of iopanoic acid and valproic acid and metabolites from liver to kidney was also apparent in BHA-fed mice. Thus, enhanced glucuronidation does not facilitate the biliary excretion of all glucuronidated compounds and only transiently increases others. It is likely that this phenomenon is the result of the glucuronides readily entering the plasma and being excreted by the kidney.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D002083 Butylated Hydroxyanisole Mixture of 2- and 3-tert-butyl-4-methoxyphenols that is used as an antioxidant in foods, cosmetics, and pharmaceuticals. Butylhydroxyanisole,(1,1-Dimethylethyl)-4-methoxyphenol,AMIF-72,BHA,Butyl Methoxyphenol,Embanox,Nipantiox 1-F,Tenox BHA,AMIF 72,AMIF72,Hydroxyanisole, Butylated,Methoxyphenol, Butyl,Nipantiox 1 F,Nipantiox 1F
D005260 Female Females
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001646 Bile An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum. Biliary Sludge,Sludge, Biliary
D014453 Glucuronosyltransferase A family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines, and fatty acids. They function as drug-metabolizing enzymes that catalyze the conjugation of UDPglucuronic acid to a variety of endogenous and exogenous compounds. EC 2.4.1.17. Glucuronyltransferase,UDP Glucuronosyltransferase,17 beta-Hydroxysteroid UDP-Glucuronosyltransferase,4-Nitrophenol-UDP-Glucuronosyltransferase,7-Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP-Glucuronosyltransferase,Bilirubin UDP-Glucuronyltransferase,Estrogen UDP-Glucuronosyltransferase,Estrone Glucuronyltransferase,Glucuronic Transferase,Morphine Glucuronyltransferase,UDP Glucuronyl Transferase,UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase,p-Nitrophenyl UDP-Glucuronosyltransferase,17 beta Hydroxysteroid UDP Glucuronosyltransferase,4 Nitrophenol UDP Glucuronosyltransferase,7 Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP Glucuronosyltransferase,Bilirubin UDP Glucuronyltransferase,Estrogen UDP Glucuronosyltransferase,Glucuronosyltransferase, UDP,Glucuronyl Transferase, UDP,Glucuronyltransferase, 7-Hydroxycoumarin UDP,Glucuronyltransferase, Estrone,Glucuronyltransferase, Morphine,Transferase, Glucuronic,Transferase, UDP Glucuronyl,UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase,UDP Glucuronyltransferase, 7-Hydroxycoumarin,UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid,UDP-Glucuronosyltransferase, Androsterone,UDP-Glucuronosyltransferase, Estrogen,UDP-Glucuronosyltransferase, p-Nitrophenyl,UDP-Glucuronyltransferase, Bilirubin,p Nitrophenyl UDP Glucuronosyltransferase
D014535 Uridine Diphosphate Glucuronic Acid A nucleoside diphosphate sugar which serves as a source of glucuronic acid for polysaccharide biosynthesis. It may also be epimerized to UDP iduronic acid, which donates iduronic acid to polysaccharides. In animals, UDP glucuronic acid is used for formation of many glucosiduronides with various aglycones. UDP Glucuronic Acid,UDPGA,Uridine Diphosphoglucuronic Acid,Acid, UDP Glucuronic,Acid, Uridine Diphosphoglucuronic,Diphosphoglucuronic Acid, Uridine,Glucuronic Acid, UDP
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Z Gregus, and C D Klaassen
April 1985, Toxicology and applied pharmacology,
Z Gregus, and C D Klaassen
June 1989, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Z Gregus, and C D Klaassen
May 1986, Toxicology and applied pharmacology,
Z Gregus, and C D Klaassen
May 1973, Canadian journal of physiology and pharmacology,
Z Gregus, and C D Klaassen
October 1967, Food and cosmetics toxicology,
Z Gregus, and C D Klaassen
May 1962, The Journal of pharmacy and pharmacology,
Z Gregus, and C D Klaassen
December 1982, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Z Gregus, and C D Klaassen
September 1985, Toxicology letters,
Copied contents to your clipboard!