Neuropathology of Rett syndrome. 1988

K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
Ludwig Boltzmann Institut für klinische Neurobiologie, Lainz-Hospital, Wien, Austria.

Rett syndrome is an increasingly recognized progressive disorder in females, commencing in infancy and characterized by autistic behavior, gait ataxia, stereotyped movements, seizures and generalized growth and mental retardation, possibly associated with disorders of central biogenic amine synthesis. The gene locus and pathogenesis of Rett syndrome are unknown. Autopsy studies in nine girls dying between 4 and 17 years, and sural nerve and muscle biopsies from two girls aged 3 and 17 years showed: (1) diffuse cortical atrophy/micrencephaly, with a decrease in brain weight by 12% to 34% of age-matched controls, apparently related to the duration of the disorder; (2) mild diffuse cortical atrophy with increased amounts of neuronal lipofuscin and occasional mild gliosis, but without signs of a storage disorder; (3) underpigmentation of the zona compacta nigrae, which showed fewer well-pigmented neurons for age and fewer melanin granules per neuron, while total numbers of nigral neurons and the substructure of neuromelanin were normal for age. No pathological changes were seen in other transmitter-specific brain stem nuclei; (4) immunoreactivity for tyrosine hydroxylase was slightly reduced in nigral and hypothalamic neurons, and the pituitary gland showed decreased immunoreaction for prolactin and growth hormone; (5) ultrastructurally, in frontal cortex and caudate nucleus, isolated abnormal neurites and reactive or degenerative axonal swellings were seen; the latter are possibly related to the nigral changes, suggesting some dysfunction of the dopaminergic nigrostriatal system, which is supported by neurochemical data; (6) preliminary biochemical studies revealed increased beta-endorphines in thalamus and cerebellum; (7) peripheral nerves demonstrated increase in small fibers without demyelination and increased numbers of neurofilaments in axons, suggesting distal axonopathy, while skeletal muscle showed alterations in the sarcoplasmic reticulum with circular profiles in the Z-filaments. These nonspecific changes may be interpreted as early signs of denervation. The variety of lesions in the central, neuroendocrine and peripheral neuromuscular systems in Rett syndrome are discussed with regard to their clinical and biochemical significance.

UI MeSH Term Description Entries
D008607 Intellectual Disability Subnormal intellectual functioning which originates during the developmental period. This has multiple potential etiologies, including genetic defects and perinatal insults. Intelligence quotient (IQ) scores are commonly used to determine whether an individual has an intellectual disability. IQ scores between 70 and 79 are in the borderline range. Scores below 67 are in the disabled range. (from Joynt, Clinical Neurology, 1992, Ch55, p28) Disability, Intellectual,Idiocy,Mental Retardation,Retardation, Mental,Deficiency, Mental,Intellectual Development Disorder,Mental Deficiency,Mental Retardation, Psychosocial,Deficiencies, Mental,Development Disorder, Intellectual,Development Disorders, Intellectual,Disabilities, Intellectual,Disorder, Intellectual Development,Disorders, Intellectual Development,Intellectual Development Disorders,Intellectual Disabilities,Mental Deficiencies,Mental Retardations, Psychosocial,Psychosocial Mental Retardation,Psychosocial Mental Retardations,Retardation, Psychosocial Mental,Retardations, Psychosocial Mental
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin
D005260 Female Females

Related Publications

K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
September 2005, Journal of child neurology,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
January 1986, American journal of medical genetics. Supplement,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
January 2002, Mental retardation and developmental disabilities research reviews,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
January 1988, Pediatric neurology,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
December 2001, Brain & development,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
May 1992, Brain & development,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
April 1995, Neuropediatrics,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
May 2002, No to hattatsu = Brain and development,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
November 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Jellinger, and D Armstrong, and H Y Zoghbi, and A K Percy
October 1994, Journal of child neurology,
Copied contents to your clipboard!