Regulation of glucocorticoid receptors and Na-K ATPase activity by hydrocortisone in proximal tubular epithelial cells. 1988

D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pennsylvania 15213-3417.

The effect of hydrocortisone (HC) in modulating glucocorticoid receptors (GR) and sodium-potassium adenosine triphosphatase (Na-K ATPase) activity was studied in primary cultures of immunoisolated murine proximal tubular epithelial cells (PTEC). Utilizing monoclonal antibody against stage-specific embryonic antigen-1, a homogeneous population of PTEC was obtained in high yield. The cells were cultured to confluence and further treated for 48 h in serum-free growth medium containing no HC (control); 50 nM HC; or 50 nM HC plus 20 nM of the antiglucocorticoid, RU 38486. PTEC treated with 50 nM HC had 56% of GR binding and 160% Na-K ATPase activity as compared to controls (P less than 0.01). GR binding was abolished by incubation in RU 38486 whereas Na-K ATPase fell below control values (P less than 0.05). Brief incubations of HC-treated PTEC with 0.5 mM ouabain resulted in a fall in GR binding without a change in Na-K ATPase activity. These data indicate that in PTEC, HC regulates GR binding and they suggest that stimulation of Na-K ATPase activity is a direct biological response to this receptor-hormone interaction. Thus, primary cultures of immunoaffinity-isolated PTEC offer a good model system for investigating the molecular basis underlying the regulation of GR binding and postreceptor events influenced by glucocorticoids.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004963 Estrenes Unsaturated derivatives of the ESTRANES with methyl groups at carbon-13, with no carbon at carbon-10, and with no more than one carbon at carbon-17. They must contain one or more double bonds. 19-Norandrostenes,19 Norandrostenes
D005723 gamma-Glutamyltransferase An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid. GGTP,Glutamyl Transpeptidase,gammaglutamyltransferase,gamma-Glutamyl Transpeptidase,Transpeptidase, Glutamyl,Transpeptidase, gamma-Glutamyl,gamma Glutamyl Transpeptidase,gamma Glutamyltransferase
D006593 Hexokinase An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1. Hexokinase A,Hexokinase D,Hexokinase II
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
October 1981, The American journal of physiology,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
September 2005, Seminars in nephrology,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
August 1998, The Journal of biological chemistry,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
August 1986, The American journal of physiology,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
April 1992, The American journal of physiology,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
October 1986, The American journal of physiology,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
January 1985, Nephrologie,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
June 2006, American journal of physiology. Renal physiology,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
January 1990, Acta physiologica Scandinavica,
D Ellis, and T D Sothi, and N P Curthoys, and B Ballou, and E D Avner
May 2010, American journal of physiology. Renal physiology,
Copied contents to your clipboard!