Selective protection of benzomorphan binding sites against inactivation by N-ethylmaleimide. Evidence for kappa-opioid receptors in frog brain. 1988

J Zawilska, and A Lajtha, and A Borsodi
Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged.

Selective binding of [3H]bremazocine and [3H]-ethylketocyclazocine to kappa-opioid receptor sites in frog (Rana esculenta) brain membranes is irreversibly inactivated by the sulfhydryl group alkylating agent N-ethylmaleimide (NEM). Pretreatment of the membranes with kappa-selective compounds [ethylketocyclazocine (EKC), dynorphin (1-13), or U-50,488H] but not with [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAGO; mu specific ligand) or [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DADLE; delta specific ligand) strongly protects the binding of the radioligands against NEM inactivation. These results provide more evidence for the existence of kappa-opioid receptors in frog brain. The relatively high concentrations of NEM that are needed to decrease the specific binding of [3H]bremazocine together with the observation of an almost complete protection of its binding sites by NaCl suggest that bremazocine may act as an opioid antagonist in frog brain.

UI MeSH Term Description Entries
D009019 Morphinans Compounds based on a partially saturated iminoethanophenanthrene, which can be described as ethylimino-bridged benzo-decahydronaphthalenes. They include some of the OPIOIDS found in PAPAVER that are used as ANALGESICS. Morphinan
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003496 Cyclazocine An analgesic with mixed narcotic agonist-antagonist properties.
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001575 Benzomorphans Morphine derivatives of the methanobenzazocine family that act as potent analgesics. Benzomorphan

Related Publications

J Zawilska, and A Lajtha, and A Borsodi
January 1980, Proceedings of the National Academy of Sciences of the United States of America,
J Zawilska, and A Lajtha, and A Borsodi
June 1982, Journal of neurochemistry,
J Zawilska, and A Lajtha, and A Borsodi
January 1983, European journal of pharmacology,
J Zawilska, and A Lajtha, and A Borsodi
January 1990, Progress in clinical and biological research,
J Zawilska, and A Lajtha, and A Borsodi
August 1995, Journal of neurochemistry,
J Zawilska, and A Lajtha, and A Borsodi
January 1985, The Journal of pharmacology and experimental therapeutics,
J Zawilska, and A Lajtha, and A Borsodi
September 1984, The Journal of pharmacology and experimental therapeutics,
J Zawilska, and A Lajtha, and A Borsodi
January 1983, Life sciences,
J Zawilska, and A Lajtha, and A Borsodi
September 1990, Neurochemical research,
J Zawilska, and A Lajtha, and A Borsodi
January 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!