Glucose and synaptosomal glutamate metabolism: studies with [15N]glutamate. 1988

M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104-6084.

The metabolism of [15N]glutamate was studied with gas chromatography-mass spectrometry in rat brain synaptosomes incubated with and without glucose. [15N]Glutamate was taken up rapidly by the preparation, reaching a steady-state level in less than 5 min. 15N was incorporated predominantly into aspartate and, to a much lesser extent, into gamma-aminobutyrate. The amount of [15N]ammonia formed was very small, and the enrichment of 15N in alanine and glutamine was below the level of detection. Omission of glucose substantially increased the rate and amount of [15N]aspartate generated. It is proposed that in synaptosomes (a) the predominant route of glutamate nitrogen disposal is through the aspartate aminotransferase reaction; (b) the aspartate aminotransferase pathway generates 2-oxoglutarate, which then serves as the metabolic fuel needed to produce ATP; (c) utilization of glutamate via transamination to aspartate is greatly accelerated when flux through the tricarboxylic acid cycle is diminished by the omission of glucose; (d) the metabolism of glutamate via glutamate dehydrogenase in intact synaptosomes is slow, most likely reflecting restriction of enzyme activity by some unknown factor(s), which suggests that the glutamate dehydrogenase reaction may not be near equilibrium in neurons; and (e) the activities of alanine aminotransferase and glutamine synthetase in synaptosomes are very low.

UI MeSH Term Description Entries
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D009587 Nitrogen Isotopes Stable nitrogen atoms that have the same atomic number as the element nitrogen but differ in atomic weight. N-15 is a stable nitrogen isotope. Nitrogen Isotope,Isotope, Nitrogen,Isotopes, Nitrogen
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000641 Ammonia A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome

Related Publications

M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
July 1990, Journal of neurochemistry,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
February 1988, The Journal of biological chemistry,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
February 1959, Biochimica et biophysica acta,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
September 1988, Journal of neurochemistry,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
November 1985, The Journal of biological chemistry,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
May 1991, The Biochemical journal,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
January 1977, Nutrition reviews,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
January 1980, Advances in experimental medicine and biology,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
January 1987, The Biochemical journal,
M Erecińska, and M M Zaleska, and I Nissim, and D Nelson, and F Dagani, and M Yudkoff
June 2004, Journal of neuroscience research,
Copied contents to your clipboard!